HOMEWORK #11 - MA 504

PAULINHO TCHATCHATCHA

Chapter 6, problem 1. Suppose α increases on [a, b], $a \leq x_0 \leq b$, α is continuous at $x_0, f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.

Solution.

Let $P = \{y_0, y_1, ..., y_n\}$ be a partition of [a, b], ie

$$a = y_0 \le y_1 \le \dots \le y_{n-1} \le y_n = b.$$

We have that there exist y_j , j = 0, ..., n, such that $x_0 = y_j$ or $y_{j-1} < x < y_j$. In either case, we see that

$$U(P, f, \alpha) \le \alpha(y_j) - \alpha(y_{j-1}) + \alpha(y_{j+1}) - \alpha(y_j) = \alpha(y_{j+1}) - \alpha(y_{j-1}),$$

$$L(P, f, \alpha) = 0.$$

Since α is continuous at x_0 we see that

$$|\alpha(y_{j+1}) - \alpha(y_{j-1})| \to 0 \text{ as } i \to \infty.$$

 So

$$\inf U(P, f, \alpha) = 0.$$

Therefore $f \in \Re(\alpha)$ and that $\int f d\alpha = 0$.

Chapter 6, problem 2. Suppose $f \ge 0$, f is continuous on [a, b], and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.

Solution.

Suppose that there exists a x_0 such that $f(x_0) > 0$. Since f is continuous there exists a $\delta > 0$ such that

$$|f(x) - f(x_0)| < \frac{f(x_0)}{2}, \quad |x - x_0| < \delta.$$

So

$$|f(x)| \ge |f(x_0)| - |f(x) - f(x_0)| > f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2}.$$

Hence, since $f \ge 0$,

$$\int_{a}^{b} f(x)dx \ge \int_{x_0-\delta}^{x_0+\delta} f(x)dx > \frac{f(x_0)}{2}[x_0+\delta-(x_0-\delta)] = \delta f(x_0) > 0,$$

a contradiction. Therefore f(x) = 0 for all $x \in [a, b]$.