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PAULINHO TCHATCHATCHA

Chapter 6, problem 4. If f(x) = 0 for all irrational x, f(x) = 1 for all rational x,
prove that f 6∈ R on [a, b] for any a < b.

Solution.
Let a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b be a partition of [a, b], call it P . We have, by the
density of the rationals (respectively the irrationals) on R,

1 = Mi = sup f(x) (xi−1 ≤ x ≤ xi),

0 = mi = inf f(x) (xi−1 ≤ x ≤ xi),

so

U(P, f) =
n∑
i=1

Mi(xi − xi−1) = b− a,

L(P, f) =
n∑
i=1

mi(xi − xi−1) = 0.

Since P is an arbitrary partition of [a, b], we have∫ b

a

fdx = b− a > 0 =

∫ b

a

f(x)dx.

Hence f 6∈ R on [a, b], a < b.
Chapter 6, problem 5. Suppose f is a bounded real function on [a, b], and f 2 ∈ R on
[a, b]. Does it follow that f ∈ R on [a, b]? Does the answer change if we assume that f 3 ∈ R?
Solution.
Answer to the first question: NÃO! (NO!).
Indeed, let f(x) = 1 for all irrational x, f(x) = −1 for all rational x. Similarly as we showed
in the previous problem, one can show that∫ b

a

fdx = b− a > 0 > a− b =

∫ b

a

f(x)dx.

Hence f 6∈ R, but f 2(x) = 1 for all x, so f 2 ∈ R on [a, b].
Answer to the second question: SIM! (YES!).
We have that φ(x) = 3

√
x is continuous on [a, b] for any a, b ∈ R, so by theorem 6.11 if

f 3 ∈ R, then h = φ ◦ f 3 ∈ R, where h(x) = φ(f 3(x)) = f(x), ie, h = f.
1
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Chapter 6, problem 10. Let p and q be positive real numbers such that

1

p
+

1

q
= 1.

Prove the following statements.
(a) If u ≥ 0 and v ≥ 0, then

uv ≤ up

p
+
vq

q
.

Equality holds if and only if up = vq.
(b) If f ∈ R(α), g ∈ R(α), f ≥ 0, g ≥ 0, and∫ b

a

fp dα = 1 =

∫ b

a

gq dα,

then ∫ b

a

fg dα ≤ 1.

(c) If f and g are complex functions in R(α), then∣∣∣∣∫ b

a

fg dα

∣∣∣∣ ≤ {∫ b

a

|f |p dα

}1/p{∫ b

a

|g|q dα

}1/q

.

(d) Show that Hölder’s inequality is also true for the “improper” integrals described in Ex-
ercises 7 and 8.

Solution.
First of all, assume u, v > 0, otherwise the inequality is trivial. We see that by making the
substitution ũ = up > 0 and ṽ = vq > 0 the inequality that we want to show is equivalent
to the following inequality (

ũ

ṽ

)1/p

≤ 1

p

(
ũ

ṽ

)
+

1

q
.

Now if we make the substitution z =
ũ

ṽ
and assume without loss of generality ũ ≥ ṽ, so

z ≥ 1, it suffices to show

z1/p ≤ z

p
+

1

q
,

whenever z ≥ 1, and equality holds if and only if z = 1.
Now the previous inequality is equivalent, by making x = z1/p ≥ 1 to

0 ≤ xp

p
− x+

1

q
.

Let f(x) =
xp

p
− x+

1

q
. We have f(1) = 0 and

f ′(x) = xp−1 − 1 > 0,
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whenever x > 1. So f is a stricly increasing funtion on (1,+∞). In particular,

f(x) =
xp

p
− x+

1

q
> f(1) = 0,

whenever x > 1, as we wanted to show.
(b) If f ∈ R(α), g ∈ R(α), f ≥ 0, g ≥ 0, and∫ b

a

fp dα = 1 =

∫ b

a

gq dα,

then it follows from the previous item that∫ b

a

fg dα ≤
∫ b

a

(
fp

p
+
gq

q

)
dα =

1

p
+

1

q
= 1.

(c) If f and g are complex functions in R(α). Assume without loss of generality that∫ b

a

|f |p dα > 0,

∫ b

a

|g|q dα > 0.

Then let

f̃ =
|f |(∫ b

a
|f |p dα

)1/p
, g̃ =

|g|(∫ b
a
|g|q dα

)1/q
.

We have f̃ ∈ R(α), g̃ ∈ R(α), f̃ ≥ 0, g̃ ≥ 0, and∫ b

a

f̃p dα = 1 =

∫ b

a

g̃q dα,

so it follows from the previous item that∫ b

a

f̃ g̃ dα ≤ 1,

which implies∣∣∣∣∫ b

a

fg dα

∣∣∣∣ ≤ ∫ b

a

|f ||g| dα ≤
{∫ b

a

|f |p dα

}1/p{∫ b

a

|g|q dα

}1/q

.

(d) By the definitions given in problems 7 and 8, the result follows trivially.

Chapter 6, problem 11. Let α be a fixed increasing function on [a, b]. For u ∈ R(α),
define

‖u‖2 =

{∫ b

a

|u|2dα
}1/2

.

Suppose that f, g, h ∈ R(α), and prove the triangle inequality

‖f − h‖2 ≤ ‖f − g‖2 + ‖g − h‖2
as a consequence of the Schwartz inequality, as in the proof of Theorem 1.37.
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Solution.
We have

‖f − h‖22 =

∫ b

a

|f − h|2dα ≤
∫ b

a

(|f − g|+ |g − h|)2dα

⇒ ‖f−h‖22 ≤
∫ b

a

(|f−g|2+2|f−g||g−h|+|g−h|2)dα = ‖f−g‖22+2

∫ b

a

|f−g||g−h|dα+‖g−h‖22,

but it follows from the Schwartz inequality that∫ b

a

|f − g||g − h|dα ≤
{∫ b

a

|f − g|2dα
}1/2

+

{∫ b

a

|g − h|2dα
}1/2

.

So

‖f − h‖22 ≤ ‖f − g‖22 + 2‖f − g‖2‖g − h‖2 + ‖g − h‖22 = (‖f − g‖2 + ‖g − h‖2)2.

Chapter 7, problem 2. If {fn} and {gn} converge uniformly on a set E, prove that
{fn+gn} converges uniformly on E. If, in addition, {fn} and {gn} are sequences of bounded
functions, prove that fngn} converges uniformly on E.

Solution.
Assume fn → f uniformly and gn → g uniformly. Then given ε > 0, there exists N1 and N2

such that

|fn(x)− f(x)| < ε ∀n ≥ N1, x ∈ E,
|gn(x)− g(x)| < ε ∀n ≥ N2, x ∈ E.

So

|fn(x)+gn(x)−f(x)−g(x)| ≤ |fn(x)−f(x)|+ |gn(x)−g(x)| < ε+ε = 2ε, ∀n ≥ N, x ∈ E,
where N = max{N1, N2}. Hence (fn + gn)→ (f + g) uniformly.
Now assume that there exists Mn and Kn such that

|fn(x)| ≤Mn ∀x ∈ E,

|gn(x)| ≤ Kn ∀x ∈ E.
Then first we see that, since fn → f uniformly and gn → g uniformly, there exists N1 and
N2 such that

|fn(x)− fm(x)| < 1 ∀n,m ≥ N1, x ∈ E,
|gn(x)− gm(x)| < 1 ∀n,m ≥ N2, x ∈ E.

Let N = max{N1, N2}. We have

|fn(x)| ≤ |fN(x)|+ |fn(x)− fN(x)| ≤MN + 1, n ≥ N,

so

|fn(x)| ≤M = max{M1,M2, ...,MN−1,MN + 1}, ∀n, x ∈ E.
Similarly, one can show

|gn(x)| ≤ K = max{K1, K2, ..., KN−1, KN + 1}, ∀n, x ∈ E.
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In particular, |f(x)| ≤M and |g(x)| ≤ K for all x ∈ E.
Now we have

|fn(x)gn(x)− f(x)g(x)| = |fn(x)(gn(x)− g(x)) + g(x)(fn(x)− f(x))|
⇒ |fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)||gn(x)− g(x)|+ |g(x)||fn(x)− f(x)|
⇒ |fn(x)gn(x)− f(x)g(x)| ≤M |gn(x)− g(x)|+K|fn(x)− f(x)|,

but since M,K < ∞ and |gn − g| → 0 and |fn − f | → 0 uniformly, it follows from the
inequality above that |fngn − fg| → 0 uniformly, ie, fngn → fg uniformly.

Chapter 7, problem 5. Let

fn(x) =


0

(
x < 1

n+1

)
,

sin2 π
x

(
1

n+1
≤ x ≤ 1

n

)
,

0
(

1
n
< x

)
.

Show that {fn} converges to a continuous function, but not uniformly. Use the series
∑
fn

to show that absolute convergence, even for all x, does not imply uniform convergence.

Solution.
Clearly we see that fn(x)→ 0 for all x, since for any x > 0 there exists N such that

1

n
≤ 1

N
< x, n ≥ N.

If x ≤ 0, then fn(x) = 0 for all n.

Now given ε > 0, let xn =
2

2n+ 1
. Then we see that

1

n+ 1
≤ 2

2n+ 1
≤ 1

n
,

so

fn(xn) = sin2

(
(2n+ 1)π

2

)
= 1, ∀n.

Therefore, since n is arbitrary, {fn} does not converge uniformly to 0.
We see that if x ≥ 1 or x ≤ 0, then fn(x) = 0 for all n, and if 0 < x < 1, there exists at

most two n′s such that
1

n+ 1
≤ x ≤ 1

n
, in this case x = 1

k
for some k ∈ N.

Hence trivially we see that
∑
fn is convergent, in particular absolute convergent since

fn ≥ 0. But as we saw previously fn does not converge uniformly.


