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PAULINHO TCHATCHATCHA

Chapter 7, problem 1. Prove that every uniformly convergent sequence of bounded
functions is uniformly bounded.

Solution.
We showed this in the solution of problem #2, chapter 7, homework #12.

Chapter 7, problem 7. For n = 1, 2, 3, ..., x real, put

fn(x) =
x

1 + nx2
.

Show that {fn} converges uniformly to a function f , and that the equation

f ′(x) = lim
n→∞

f ′n(x)

is correct if x 6= 0, but false if x = 0.

Solution.
We see that the parabola nx2 − 2

√
nx + 1 has concave up and only one root, so nx2 −

2
√
nx+ 1 ≥ 0 for all x real. Hence

fn(x) =
x

1 + nx2
≤ 1

2
√
n
,

se it is trivial to see that fn converges uniformly to 0. We have that

f ′n(x) =
1− nx2

(1 + nx2)2
≤ 1

1 + nx2
,

so if x 6= 0, then

lim
n→∞

f ′n(x) = 0,

but f ′n(0) = 1 for all n.

Chapter 7, problem 9. Let {fn} be a sequence of continuous functions which converges
uniformly to a function f on a set E. Prove that

lim
n→∞

fn(xn) = f(x)

for every sequence of points xn ∈ E such that xn → x, and x ∈ E. Is the converse of this
true?
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Solution.
Assume that xn → x. Since fn → f uniformly, given ε > 0, there exits N such that

|fn(y)− f(y)| < ε, ∀n ≥ N, y ∈ E.
By the continuity of fN there exits δ > 0 such that

|fN(x)− fN(y)| < ε, |x− y| < δ.

So

|f(x)− f(y)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f(y)| < 3ε, |x− y| < δ.

In particular, since ε > 0 is arbitrary, this implies that f is continuous. Hence

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| < ε+ 3ε = 4ε, n ≥ N, |xn − x| < δ.

Therefore
lim
n→∞

fn(xn) = f(x)

for every sequence of points xn ∈ E such that xn → x, and x ∈ E.

The converse is NOT true. Consider fn(x) =
1

nx+ 1
. So if xn → x, fn(xn)→ 0 if x 6= 0 and

fn(xn) = 1 if x = 0. But we see that the convergence is not uniform, since fn is continuous
and converges to a function that is not continuous.

Chapter 7, problem 16. Suppose {fn} is an equicontinuous sequence of functions on
a compact set K, and {fn} converges pointwise on K. Prove that {fn} converges uniformly
on K.

Solution.
Assume that fn → f pointwise on K. Given ε > 0, since {fn} is an equicontinuous sequence
of functions, there exists δ > 0 such that

|fn(x)− fn(y)| < ε |x− y| < δ,∀n.
We see that the balls Bδ(x) = {y ∈ K : |x− y| < δ} cover K, and since K is compact, there
exists finitely many balls, say B1 = Bδ(x1), B2 = Bδ(x2), ..., Bl(xl) that cover K.
So given x ∈ K, there exists xj such that x ∈ Bj = Bδ(xj), hence

|fn(x)− fm(x)| ≤ |fn(x)− fn(xj)|+ |fn(xj)− fm(xj)|+ |fm(xj) + fm(x)|.
Since fn converges pointwise, fn(xj) is a Cauchy sequence. So there exits Nj such that

|fn(xj)− fm(xj)| < ε, n,m ≥ Nj.

Let N = max{N1, ..., Nl}, we have

|fn(x)−fm(x)| ≤ |fn(x)−fn(xj)|+|fn(xj)−fm(xj)|+|fm(xj)+fm(x)| < 3ε, |x−xj| < δ, n,m ≥ N,

ie,
|fn(x)− fm(x)| < 3ε, ∀n,m ≥ N, ∀x ∈ K.

Therefore {fn} is uniform Cauchy so it is uniformly convergent on K.
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Chapter 7, problem 18. Let {fn} be a uniformly bounded sequence of functions which
are Riemann-integrable on [a, b], and put

Fn(x) =

∫ x

a

fn(t)dt (a ≤ x ≤ b).

Prove that there existsa subsequence {Fnk} which converges uniformly on [a, b].

Solution.
Assume |fn(x)| < M for all x ∈ [a, b] and for all n. We have

|Fn(x)− Fn(y)| =
∣∣∣∣∫ x

y

fn(t)dt

∣∣∣∣ ≤M |x− y| ≤M(b− a).

So we see that {Fn} is a uniformly bounded equicontinuous sequence of functions. By The-
orem 7.23 there exists a subsequence {Fnk} that is pointwise convergent. Since {Fnk} is
equicontinuous, it follows from the previous problem (Chapter 7, problem 16) that {Fnk}
converges uniformly on [a, b].

Chapter 7, problem 20. If f is continuous on [0, 1] and if∫ 1

0

f(x)xndx = 0 (n = 0, 1, 2, ...),

prove that f(x) = 0 on [0, 1]. Hint: The integral of the product of f with any polynomial

is zero. Use Weierstrass theorem to show that

∫ 1

0

f 2(x)dx = 0.

Solution.
First we see that if p(x) = a0 + a1x+ ...+ anx

n is a polynomial, then∫ 1

0

f(x)p(x)dx =
n∑
j=0

aj

∫ 1

0

f(x)xjdx = 0.

Now by Weierstraβ theorem (7.26), there exists a sequence of polynomial pn such that
pn → f uniformly. So it follows from theorem 7.16 that∫ 1

0

f 2(x)dx =

∫ 1

0

f(x)( lim
n→∞

pn(x))dx = lim
n→∞

∫ 1

0

f(x)pn(x)dx = 0.


