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In this talk I present results concerning the problem
u>0,0u — Au = 0in {u >0}, |Vu| =1 on 0{u > 0} (1)

which has been used as a simple model for flame propagation ([3]). Here
u=MNT.—T),T is the temperature outside the flame, T, is the flame temper-
ature which is assumed to be constant and A is a normalization factor.

When dealing with equation (1) one faces the following problems: in general the
solution is not unique, after finite time singularities arise and the multiplicity
of the interface (i.e. the free boundary 0{u > 0}) may increase. This is remi-
niscent of the problems known in the case of motion by mean curvature and the
equations are indeed intrinsically related. The existence of degenerate points,
i.e. points at which Vu = 0, complicates the matter further.

Let me shortly summarize the known results for equation (1): For the stationary
problem Alt and Caffarelli obtained existence of a solution by minimizing the
energy E(v) := [(|Vv|* + x{v>0}) on an affine subspace of H**(Q) ([1]). They
proved furthermore that the minimizer is locally Lipschitz continuous, that it
is a solution in the sense of distributions and that the free boundary is regular
up to a set of vanishing H" !-measure. In [5] I showed that the singularities
are isolated for n = 3 and that the singularities are a n — 3-dimensional set in
general.

For the application in combustion theory a natural approximation to equation
(1) turns out to be
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Concerning this approximation, Berestycki, Caffarelli and Nirenberg ([2]) proved
in the stationary case that u. is uniformly Lipschitz continuous. Assuming the
existence of a minimal solution of the stationary equation they could prove fur-
ther steps towards convergence to the limit problem.

In the case of time dependence, Caffarelli and Vazquez ([4]) showed that wu, is
uniformly Lipschitz continuous. For “strictly concave” initial data they proved
that any limit is a solution in the sense of distributions.

For the two-phase case there are results by Caffarelli-Lederman-Wolanski, D.
Danielli and others.

The results I present in my talk on the problem with general initial data in
higher dimensions include the following: each limit of u. is a solution in the
sense of domain variations. For a.e. time the non-degenerate singular set is
n — 1 countably rectifiable.
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