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Name: q 8 bggz{'?m;w ' Math 511 March 10, 2010

- (Work will be graded on the basis of clarity as well as accuracy.)

1. A mathematical statement is “True” if it is true in all cases possible; otherwise it is
‘False.” Indicate T or F for the following assertions and indicate a reson to justify your
answer: T

(a,) If A is a 4 x 3 matrix, then the equation Az = 0 has at least one solution.
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(b) If A is an m X 'h matrix with #nearly independent golumns, then it has hnearly

independent rows. o
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(c) The solutions to the equation Az = 0 form a vector space.
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(d) If all dlagonal entries of A are zero, then A is singular.
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(e) If P is the elementary matrix which exchanges rows ¢ and j (i # j), then det P=1.
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(10) 2(a). A set {v1,vs,...,vx} is linearly independent if: (use the space to coinplete the

sentence)
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(b) Let v1, vz and s be orthogonal. Prove that they are linearly independent.
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(20) 3. Let T be the matrix on R? with Te; = (2,4) and Tey = (~1,1) (e1 and e, are the
usual basis vectors in the plane).

(a) Write down the matrix A which gives T with respect to this basis.
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(b) Find A~1, and use it to determine the preimage of (1,1) under T
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(20) 4. (a) Give a basis for the column space C' and null space N of the matrix
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(b) Show that ,Z‘ and 2 are orthogonal, and explain@in general they are orthog-
onal complements of each other (the word rank should appear somewhere in your
discussion). M\% e T,
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5. Let A be an mxn matrix with linearly independent columns, and consider the equation

Az =h.
(a) In this situation (for general m and n) explain why we expect this equation not
have a solution.
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(b) Let £ be the ‘solution’ given by least squares. Derive the formulas for & and A%
using various matrices associated to 4, etc. What is the relation between b — A% and
the range of A (this can almost be answered in one word)? — W AN

(c) If we consider the least squares solution to the system Cz + D = b with data
z = —1,0,1 and the b-values 3,2,2, what is the matrix /Q’ Does Z/?_have linearly
independent columns? Linea‘rlk//independent rows? %
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(15) 6. (a) Find the area (ﬁsing what we learned in class) of the parallelogram with vertices
(2,3), (5, -1), (-2,-1) and (1,-5).

(b) Suppose we have a 6 x 6 matrix A, and%\ive k50W all its cofactors. How would you '
find the entry a1z of A?  ( Bad prrblea




