2 Friday, August 25

Review

Definition (Informal Definition of Limit). Suppose f(x) is defined in an open interval about x = c, except possibly at x = c. If the values of f(x) become arbitrarily close to L as the values of x approach x approach x approaches x approaches x is x approaches x approaches x is x approaches x approaches x is x approaches x is x approaches x approaches x is x approaches x approaches x approaches x is x approaches x approach

$$\lim_{x\to c}f(x)=L.$$

Definition (One-sided Limit). If $f(x) \to L$ as $x \to c$ from x values that are to the left of c (x < c), then

$$\lim_{x\to c^-}f(x)=L.$$

Similarly, if $f(x) \to M$ as $x \to c$ from x values that are to the right of c (x > c), then

$$\lim_{x \to c^+} f(x) = M.$$

Theorem (Two-sided Limit Existence).

$$\lim_{x\to c} f(x) = L \qquad \text{if and only if} \qquad \lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L.$$

Finding Limits Graphically

Given the graph of a function f(x), the value of a one-sided limit at x = c is the expected y-coordinate of the point if one was to trace the graph from the appropriate direction. The value of the two-sided limit is found by computing the one-sided limits and then applying the two-sided limit existence theorem. Remember, the value of f(x) at x = c has no bearing on the existence or value of the limit.

		A
+	•/	0
		

C	×->c_	× → c+	××	f(c)
0	DNE	l	DNE	
1	0	1	DNE	1
à	1			a
[3	2	ð	à	9
4	3	3	3	3
5	λ	DNE	NNE	DNE

2 continuous

Ex:

+	1	•	
+	1	So .	
+	\		

۷	f (c)	× -> C-	x -> c +	X->C
0	a	à	λ	a
a	DNE	_ &	+ ∞	DN E
4	4	a	a	à

Ex:

<u>(</u>	F(c)	X->c-	スラピナ	X >> C
2	a	4 00	_ &	ONE
ч	DNE	+ ∞	4 ∞	+ 00
6	DNE	1 00	_ ∞	ANE

Ex:

	

اے	fle	x->c	x -> c +	× → c
		1		1
0		2	3	3
a 3		+ ∞		DNE
3 4	2		9	a
Š	DNE	3	+ 00	DNE
7	1	1	\	1
9	3	+ 00	3	DNE
10	3	3	3	3
14	DNE	3 \	3	3