

## Wednesday, August 30

#### Continuity

1.30 23.9

Definition (Continuity). A function f is continuous at x = c if



(ii) 
$$\lim_{x\to c} f(x)$$
 exists.

(iii) 
$$\lim_{x\to c} f(x) = f(c)$$
.

Otherwise, f is discontinuous at x = c. Furthermore, if f is continuous at every x in the open interval (a,b), then f is continuous on (a,b). If f is continuous on (a,b) and from the

$$\lim_{x \to a^+} f(x) = f(a) \qquad \lim_{x \to b^-} f(x) = f(b),$$

$$\lim_{x \to a^+} f(x) = f(a)$$

$$\lim_{x \to b^-} f(x) = f(b)$$

then f is continuous on [a, b].

Note. Graphically, this definition means that f is continuous on an interval if and only if the graph of f can be drawn with a single, unbreaking stroke.

**Example.** Examples of continuous functions:

(1) Polynomials are continuous everywhere.

$$f(x) = x + 1$$
  $g(x) = x^2 + 3$   $h(x) = x^{100} - x$ 

(2) Rational functions are continuous on their domains.

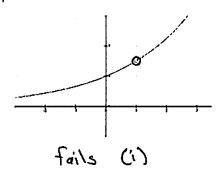
$$f(x) = \frac{x+1}{x-2} \qquad (-\infty, 2) \cup (2, \infty)$$

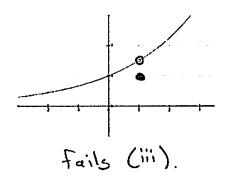
$$g(x) = \frac{x}{x^2 + 3x + 2} \quad (-\infty, -2) \cup (-2, -1) \cup (-1, \infty)$$

- (3) If f and g are continuous at x=c, then kf (k a real number),  $f\pm g$ , fg, and  $\frac{f}{g}$  (g(c)  $\neq$  0) are continuous
- (4) Trigonometric, exponential, and logarithmic functions are all continuous everywhere on their domain.

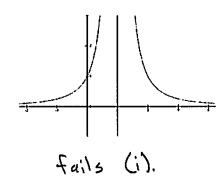
### **Example.** Examples of discontinuous functions:

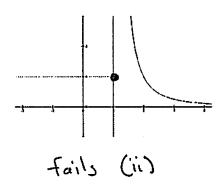
#### (1) Gap/hole discontinuities





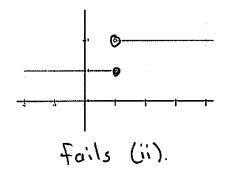
#### (2) Infinite discontinuities





....

#### (3) Jump discontinuities



#### Continuity of Piecewise Functions

To find where a piecewise function is continuous:

- (1) Check where each branch is continuous as a function on its own. Compare this with the interval that the branch is defined, taking only the relevant part.
- (2) Use the definition of continuity to check the continuity of points where the branches change.

**Example.** Find the points of discontinuity for each of the following functions. Are the function continuous from the left or right at these points?

(1) 
$$f(x) = \begin{cases} x^2 - 3x + 1 & x \neq 3 \\ 2 & x = 3 \end{cases}$$

branch is continuous on its own.



$$\frac{\text{Stank 11 to m/3}}{x=3: f(3)=a}$$

$$\lim_{x\to 3^{-}} f(x) = q-q+1=1$$

$$\lim_{x\to 3^{+}} f(x) = 1$$

$$\lim_{x\to 3^{+}} f(x) = 1$$

$$\lim_{x\to 3^{+}} f(x) \neq f(3)$$

$$\lim_{x\to 3^{-}} f(x) \neq f(3)$$

$$\lim_{x\to 3^{+}} f(x) = 1$$

$$\lim_{x\to 3^{+}} f(x) \neq f(3)$$

$$\lim_{x\to 3^{+}} f(x) = 1$$

$$\lim_{x\to 3^{+}} f(x) \neq f(3)$$

$$\lim_{x\to 3^{+}} f(x) = 1$$

(2) 
$$f(x) = \begin{cases} 4x+5 & x \le -1 \\ x^2+1 & x > -1 \end{cases}$$

Thier

maring y

ration, and thing all the

$$(3) \ f(x) = \begin{cases} x^2 - 1 & -1 \le x \le 0 \\ 2x & 0 < x < 1 \\ 1 & x = 1 \\ -2x + 4 & 1 < x < 2 \\ 0 & 2 < x < 3 \end{cases}$$

The branches are continuous on their own.

# Bronch Points

$$x=0: f(0)=-1.$$

$$x \to 0^{+}$$
 $x \to 0^{+}$ 
 $x \to 0^{-}$ 
 $x \to$ 

discontinuous at x=0: Jump

$$f(t)=1.$$

$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} 2x = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (-dx^{+4}) = 0$$

$$f(1) \neq \lim_{x \to 1} f(x)$$

$$f(1) \neq \lim_{x \to 1} f(x)$$

$$f(2x) = 0$$

$$f(3x) = 0$$

$$f(3x$$