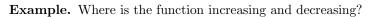
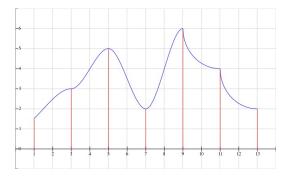

17 Friday, October 6


Increasing and Decreasing


Definition (Increasing and Decreasing). Let f be a function defined on (a, b), and let x_1, x_2 be any two numbers in (a, b).

- (i) f is **increasing** on (a, b) if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$.
- (ii) f is **decreasing** on (a, b) if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$.

Theorem (First Derivative Test for Increasing and Decreasing). Suppose f is continuous on [a, b] and differentiable on (a, b).

- (i) If f'(x) > 0 for all x in (a, b), then f is increasing on [a, b].
- (ii) If f'(x) < 0 for all x in (a, b), then f is decreasing on [a, b].
- (iii) If f'(x) = 0 for all x in (a, b), then f is constant on [a, b].
- To find intervals of increasing and decreasing:
- (1) Find all critical numbers c of f. Mark them on a number line.
- (2) Pick test points from each interval and determine the sign of f' at those points.
- (3) Apply the FDT to determine whether it is increasing or decreasing.

Example. Find the intervals where each function is increasing and decreasing.

(1) $f(x) = x^2$

(2) $f(x) = x^3 + 3x^2 - 9x + 10$

Theorem (First Derivative Test for Relative Extrema). Let c be a critical number of a function f that is continuous on (a, b) containing c. Then one of three cases occurs at c:

- (i) If f' changes from negative to positive, then f has a relative minimum at c.
- (ii) If f' changes from positive to negative, then f has a relative maximum at c.
- (iii) If f' does not change signs, then f has no extremum at c.

To find relative extrema:

- (1) Find all critical numbers c of f. Mark them on a number line.
- (2) Determine increasing/decreasing.
- (3) Apply FDT to identify the extremum.

Example. Find the intervals where each function is increasing and decreasing. Identify the relative extrema.

(1) $f(x) = 2x^3 + 6x^2 + 6x - 4$

(2)
$$f(x) = (x+1)^3(x-3)$$

$$(3) \quad f(x) = \frac{1}{x}$$

(4)
$$f(x) = \frac{1}{(x-1)^2}$$

(5)
$$f(x) = \frac{1}{x-2} - \frac{1}{x+2}$$

(6)
$$f(x) = \frac{1}{x^2 + 1}$$

(7)
$$f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$$

(8) $f(x) = x^{2/3}(x+5)$

(9) $f(x) = \sin x \tan x$

(10) $f(x) = \cos^2 x + \cos x$

(11) $f(x) = x^2 \ln x$

(12) $f(x) = (x^2 - x - 1)e^x$