19 Monday, October 16

Absolute Extrema on an Interval

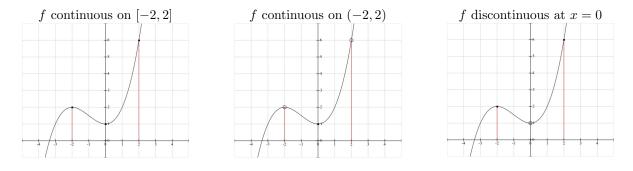
Definition (Absolute Extrema). Let f be defined on an interval I containing c.

- (i) f(c) is the **minimum of** f **on** I when $f(c) \leq f(x)$ for all x in I.
- (ii) f(c) is the **maximum of** f **on** I when $f(c) \ge f(x)$ for all x in I.

The maximum and minimum values are the **extreme values**, or **extrema**. In particular, the maximum and minimum of f on I are the **absolute maximum** and **absolute minimum** of f on I (global is also used for absolute). If extrema occur at endpoints, then they are called an **endpoint extrema**.

Theorem (Extreme Value Theorem). If f is continuous on a closed interval [a, b], then f attains both a maximum and minimum on the interval.

Note. The continuity condition on [a, b] is necessary for the EVT to hold.



To find absolute extrema of a continuous function f on [a, b]:

- (1) Find the critical numbers of f that lie in [a, b]
- (2) Evaluate f at each critical number.
- (3) Evaluate f at the endpoints a and b.
- (4) The max/min of these numbers is the absolute extrema.

Example. Find the absolute extrema of each function on the given interval.

(1) $f(x) = 4 - x^2$ on [-3, 1]

(2)
$$f(x) = x^3 - \frac{3}{2}x^2$$
 on $[-1, 2]$

(3)
$$f(x) = -\frac{1}{x^2}$$
 on [1,2]

(4)
$$f(x) = x + \frac{1}{x}$$
 on $\left[\frac{1}{2}, 3\right]$

(5)
$$f(x) = \frac{3}{x-5}$$
 on $[0,2]$

(6)
$$f(x) = \frac{x^2}{x+1}$$
 on $\left[-\frac{1}{2}, 1\right]$

(7)
$$f(x) = \sqrt{4 - x^2}$$
 on $[-1, 2]$

(8) $f(x) = 3x^{2/3} - 2x$ on [-1, 1]

(9)
$$f(x) = \sec x$$
 on $\left[-\frac{\pi}{3}, \frac{\pi}{6}\right]$

(10) $f(x) = x^2 e^x$ on [-3, 1]

(11) $f(x) = 5e^x \sin x$ on $[0, \pi]$

(12) $f(x) = x^2 - 8 \ln x$ on [1,6]

(13) $f(x) = x \ln(x+3)$ on [0,3]

(14)
$$f(x) = \frac{\ln x}{8x}$$
 on [1,4]