20 Friday, October 20

Limits at Infinity

Definition (Limits at Infinity). If the values of the function f(x) approach the number L as x grows without bound, then

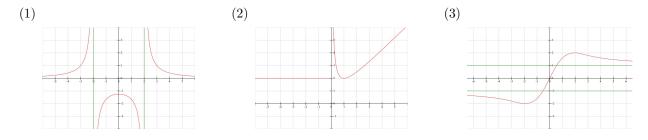
$$\lim_{x \to \infty} f(x) = L$$

and similarly

$$\lim_{x \to -\infty} f(x) = M.$$

These limiting values, if the exist, create horizontal asymptotes.

Example. Find the horizontal asymptotes of the following graphs.



Example. Use a calculator to complete the table and estimate the limit as x approaches infinity.

Theorem (Reciprocal Limit Rule). If A is a real number, k > 0, and x^k is defined for all x, then

$$\lim_{x \to \pm \infty} \frac{A}{x^k} = 0.$$

To find limits at infinity:

- (1) Divide each term in the numerator and denominator by the highest power of x in the numerator and denominator.
- (2) Apply limit rules.

Example. Find each limit.

(1)
$$\lim_{x \to \infty} \left(5 + \frac{8}{x} \right)$$

(2)
$$\lim_{x \to \infty} \frac{5 - 7x}{5x^3 - 9}$$

(3)
$$\lim_{x \to \infty} \frac{5 - 7x}{5x - 9}$$

(4)
$$\lim_{x \to \infty} \frac{5 - 7x^2}{5x - 9}$$

(5)
$$\lim_{x \to \infty} \frac{x^2 - 2x + 5}{2x^2 + 5x + 1}$$

(6)
$$\lim_{x \to -\infty} \frac{2x+1}{3x^2+2x-7}$$

(7)
$$\lim_{x \to -\infty} \frac{9x^3 + 7}{18x^3 - 6x^2 + 4}$$

Definition. A rational function f(x) = p(x)/q(x) has a **dominant term** g(x) as $x \to \infty$ (or $x \to -\infty$) if it can be written such that

$$f(x) = g(x) + \frac{r(x)}{q(x)}$$
, where $\lim_{x \to \infty} \frac{r(x)}{q(x)} = 0$.

Dominant terms are functions such that when x is very large, then $f(x) \approx g(x)$ so that g(x) dominates the r(x)/q(x) term. In particular, when p and q are polynomials, f has a dominant term when deg $p \ge \deg q$, and when deg $p = \deg q + 1$, then f has g(x) for a **slant asymptote**.

Theorem (Rational Function Theorem). Let

$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0} \quad \text{with } \deg p = n, \deg q = m$$

be a rational function. Then:

- (1) f(x) has a vertical asymptote x = c if q(c) = 0 but $p(c) \neq 0$. If both p(c) = q(c) = 0, then factor f(x) and perform any cancellations. Check p(c) and q(c) afterwards
- (2) f(x) has the following possibilities for a horizontal asymptote:
 - (a) if n > m, then f has no horizontal asymptotes, and if n = m + 1, then f has a slant asymptote.
 - (b) if n < m, then y = 0 is a horizontal asymptote.
 - (c) if n = m, then $y = \frac{a_n}{b_n}$ is a horizontal asymptote.

Example. Find the horizontal and vertical asymptotes of the following functions.

(1)
$$f(x) = \frac{1}{x-1}$$

(2)
$$f(x) = \frac{x+3}{x-2}$$

(3)
$$f(x) = \frac{x^2 + x - 6}{x^2 - 16}$$

(4)
$$f(x) = \frac{2x^2 + x - 1}{x^2 - 1}$$

(5)
$$f(x) = \frac{4x}{x^2 + 4}$$

(6)
$$f(x) = \frac{2x^2}{x+1}$$

(7)
$$f(x) = \frac{x^2 - 4}{x - 1}$$

(8)
$$f(x) = \frac{x^4 + 1}{x^2}$$

(9)
$$f(x) = \frac{x^3 + x - 2}{x - x^2}$$

(10)
$$f(x) = \frac{x^3 + 3x + 1}{x^2 + x - 2}$$

Example. Find the following limits.

(1)
$$\lim_{x \to \infty} \frac{5 - 2x^{3/2}}{3x^2 - 4}$$

(2)
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 - x}}$$

(3)
$$\lim_{x \to -\infty} \frac{\sqrt{x^4 - 1}}{x^3 - 1}$$

(4)
$$\lim_{x \to -\infty} \frac{2x}{(x^6 - 1)^{1/3}}$$

(5) $\lim_{x \to \infty} \cos x$

(6) $\lim_{x \to \infty} \sin \frac{1}{x}$

(7)
$$\lim_{x \to \infty} \frac{1}{e^x + 1}$$

(8)
$$\lim_{x \to -\infty} \frac{1}{e^x + 1}$$

(9)
$$\lim_{x \to \pm \infty} \left[x + \sqrt{x^2 + 3} \right]$$

(10)
$$\lim_{x \to \pm \infty} \frac{x}{3x - \sqrt{9x^2 - x}}$$

(11) $\lim_{x \to \infty} \left[\ln(x+1) - \ln x \right]$