26 Wednesday, November 1

Antiderivatives

Definition. Given a function f(x), a function F(x) such that F'(x) = f(x) is called an **antiderivative** of f(x). For example, the functions

$$x^2 - x + 1$$
 $x^2 - x - 5$

are antiderivatives of the function 2x - 1. The process of finding an antiderivative is known as **indefinite** integration. To denote the process of integration, we have the following notation:

$$\int f(x) dx = F(x) + C$$
 means $\frac{d}{dx}F(x) = f(x)$

The symbol \int is the **integral sign**, the function f(x) is the **integrand**, the variable denoted in the dx is the **variable of integration**, and the C is the **constant of integration**.

An important observation is that, because the derivative of a constant is zero, you can alter one antiderivative of a function f(x) by a constant to get another antiderivative of f(x). In fact, by a corollary of the Mean Value Theorem, the complete set of possible antiderivatives of a function all differ by a constant:

Theorem. If F(x) and G(x) are antiderivatives of a function f(x), then for all x, F(x) - G(x) = C with some constant C.

For this reason, we always write in the constant of integration C when finding the indefinite integral of a function.

Differentiation Rule	Integration Rule
$\frac{d}{dx}C = 0$	$\int 0 dx = C$
$\frac{d}{dx}kx = k$	$\int k dx = kx + C$
$\frac{d}{dx}\left[kf(x)\right] = k\frac{d}{dx}f(x)$	$\int kf(x)dx = k\int f(x)dx$
$\frac{d}{dx} \left[f(x) \pm g(x) \right] = \frac{d}{dx} f(x) \pm \frac{d}{dx} g(x)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
$\frac{d}{dx}x^{n+1} = (n+1)x^n, n \neq -1$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
$\frac{d}{dx}\sin x = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}\cos x = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}\tan x = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}\cot x = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx}\sec x = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}\csc x = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$
$\frac{d}{dx}e^x = e^x$	$\int e^x dx = e^x + C$
$\boxed{\frac{d}{dx}\ln x = \begin{cases} \frac{d}{dx}\ln x & x > 0\\ \frac{d}{dx}\ln(-x) & x < 0 \end{cases}} = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C$

For every derivative rule, there is a corresponding antiderivative rule:

It is worth noting that, in stark contrast with differentiation, integration is in general a very difficult process. In fact, many functions that are simply expressed just do not have an antiderivative that can be written in a closed form. Such integrals are called **nonelementary integrals**. For example,

$$\int \frac{\sin x}{x} dx \qquad \int \sqrt{1 - x^4} dx \qquad \int \sin (x^2) dx \qquad \int e^{-x^2} dx$$

are all nonelementary integrals. They appear quite frequently in physics, engineering, and statistics. Evaluating such indefinite integrals requires the use of infinite series (a topic discussed in MA16020). **Example.** Find the antiderivative of the following functions.

(1)
$$\int \left(x^3 - 2x\right) dx$$

(2) $\int x^{100} dx$

(3) $\int \sqrt{y} \, dy$

$$(4) \int \left(x^2 + x^{-2}\right) dx$$

(5) $\int e \, dx$

(6)
$$\int (t+2)(t-3) dt$$

(7)
$$\int \frac{x-1}{\sqrt[3]{x}} \, dx$$

(8) $\int \left(2\sin x - e^x\right) dx$

(9)
$$\int \left(x^e + 2e^x\right) dx$$

(10)
$$\int x \left(\sqrt[3]{x} + \sqrt[5]{2x} \, dx\right)$$

(11)
$$\int \frac{1 + \cos^2 x}{\cos^2 x} \, dx$$

(12)
$$\int \frac{\sqrt{u}-u}{u^2} du$$

(13)
$$\int \left(\theta - 4\csc\theta\cot\theta\right)d\theta$$

(14)
$$\int \frac{\sin 2x}{\sin x} \, dx$$

$$(15) \int v \left(v^2 + 2\right)^2 dv$$