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Antiderivatives

Definition. Given a function f(z), a function F(z) such that F’(z) = f(x) is called an antiderivative of
f(x). For example, the functions

2 —x 41 > —x—5
are antiderivatives of the function 2x — 1. The process of finding an antiderivative is known as indefinite
integration. To denote the process of integration, we have the following notation:

/f(x) de =F(x)+C means iF(x) = f(z)

The symbol [ is the integral sign, the function f(z) is the integrand, the variable denoted in the dz is
the variable of integration, and the C is the constant of integration.

An important observation is that, because the derivative of a constant is zero, you can alter one antiderivative
of a function f(x) by a constant to get another antiderivative of f(x). In fact, by a corollary of the Mean
Value Theorem, the complete set of possible antiderivatives of a function all differ by a constant:

Theorem. If F(x) and G(z) are antiderivatives of a function f(z), then for all z, F(z) — G(x) = C with
some constant C.

For this reason, we always write in the constant of integration C' when finding the indefinite integral of a
function.



For every derivative rule, there is a corresponding antiderivative rule:
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It is worth noting that, in stark contrast with differentiation, integration is in general a very difficult process.
In fact, many functions that are simply expressed just do not have an antiderivative that can be written in
a closed form. Such integrals are called nonelementary integrals. For example,
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x

are all nonelementary integrals. They appear quite frequently in physics, engineering, and statistics. Evalu-
ating such indefinite integrals requires the use of infinite series (a topic discussed in MA16020).



Example. Find the antiderivative of the following functions.
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