
ON A FORMULA ABOUT SCHUR FUNCTOR

1. Main result

The main propurse of this note is to prove the following formula about Schur
functor in [2][Exercise 6.11]:

Proposition 1.1. Let V and W be vector spaces over C of dimension n and m
respectively, let ν be a partition of length d = n+m, then there is a decomposition
of GL(V )×GL(W ) module:

(1.1) Sν(V ⊕W ) =
⊕

Nµλν(SµV ⊗ SλW ),

where the sum to the right hand side is over all partitions µ, λ of length a, b
respectively with a+ b = d, and Nµλν are the Littlewood-Richardson numbers.

Recall that the Schur functor Sν can be defined as Sν(V ) = V ⊗d ⊗ C(Sd) · cν ,
here cν is the Young symmetrizer correspond to ν and the tensor product is over
C(Sd). In [2], C(Sd) · cν is denoted by Vν , it is a irreducible representation of Sd
and all irreducible representations of Sd are of this form[2][Theorem 4.3].

To prove this proposition, first we have a decomposition of vector spaces

(1.2) (V ⊕W )⊗d =
⊕
a+b=d

(V ⊗a ⊗W⊗b)⊕ d!
a!b! .

Keep track of the action of Sd on (V ⊕W )⊗d, we know the summands on the right
hand side of 1.2 are stable under the action of Sd, and we can actually write them
as ⊕σ∈Sd/(Sa×Sb)(V ⊗a ⊗W⊗b) · σ. But this is just IndSdSa×SbV

⊗a ⊗W⊗b.
So we have the following identity:

(1.3) (V ⊕W )⊗d =
⊕(

(V ⊗a ⊗W⊗b)⊗C(Sa×Sb) C(Sd)
)
,

tensoring Vν on both side, we have:

(1.4) Sµ(V ⊕W ) =
⊕(

V ⊗a ⊗W⊗b ⊗C(Sa×Sb) ResVν
)
,

here Res is ResSdSa×Sb .
We know all the irreducible representations of Sa × Sb are of the form Vµ ⊗ Vλ

where µ and λ are partitions of a and b respectively[2][Exercise 2.36], and we have
(V ⊗a ⊗W⊗b) ⊗ (Vµ ⊗ Vλ) = Sµ(V ) ⊗ Sλ(W ). Let Mµλν be the multiplicities of
Vµ ⊗ Vλ in ResVν , then to prove the proposition, one need to show:

Lemma 1.2. For all partitions ν, µ and λ, the non-negative integers Mµλν and
Nµλν are equal.

From Frobenius reciprocity, we have Mµλν is also the multiplicity of Vν in

IndSdSa×SbVa ⊗ Vb.
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2. The ring of representations of permutation groups

Let Rd = K0(C(Sd)) be the Grothendieck group of representations of Sd, i.e.
the free abelian group generated by isomorphic classes [V ] of representations of Sd
modulo the relation [V ] + [W ] = [U ] if there is an exact sequence 0 → V → U →
W → 0 of of Sd-modules. Actually Rd is a free abelian group with basis [Vµ] for
all partitions µ of d. Let R0 = Z.

Definition 2.1. Let R =
⊗

k≥0Rk and define a function ◦ : Rm × Rn → Rm+n

by:

(2.1) [V ] ◦ [W ] = [Ind
Sm+n

Sm×SnV ⊗W ]

Then from Ind
Sm+n

Sm×SnV ⊗W =
⊕

g∈Sm+n/(Sm×Sn)(V ⊗W ) · g we can prove

(2.2) ([U ] ◦ [V ]) ◦ [W ] = [U ] ◦ ([V ] ◦ [W ]) = [Ind
Sl+m+n

Sl×Sm×SnU ⊗ V ⊗W ],

i.e., R becomes a commutative graded ring under ◦.
Let Λ be the inverse limit of rings of symmetric polynomials with coefficients in

Z, and the inverse system is given by ϕmn(P (x1, . . . , xm)) = P (x1, . . . , xn, 0, . . . , 0)
when m > n. We have Λ = ⊕Λd where Λn can be can identified with the symmetric
polynomials of degree d in k ≥ d variables. Let Hµ, Sµ and Mµ be the complete
symmetric polynomials, Schur polynomials and monomial symmetric polynomials
respectively, they form different basis of Λ.

Let µ = (µ1, . . . , µk) be a partition of d, recall in [2], we define Uµ = IndSdSµ1×...×Sµk
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be the representation of Sd. Then we are going to prove the following main theorem:

Theorem 2.2. Define φ : Λ → R by φ(Hµ) = [Uµ], then φ is a well-defined
isomorphism of graded rings with φ(Sµ) = [Vµ].

Once we have the theorem, then by the Littlewood Richardson rule: Sλ · Sµ =∑
ν NµλνSν , we have [Vλ] ◦ [Vµ] = ⊕νNµλν [Vν ], which is Lemma 1.2.

3. The ring of symmetric polynomials and the proof of main theorem

Before we prove the main theorem, let us first go over some basic formulas
about some important symmetric functions, in which lots of combinatoric constants
appear.

Complete symmetric functions with m indeterminates are defined by the
following identity of formal power series in t:

(3.1)

m∏
i=1

1

1− xit
=

∞∑
k=0

Hk(x1, . . . , xm)tk

And if µ = (µ1, . . . , µk), define Hµ = Hµ1 · . . . ·Hµk .
Schur polynomials are define by

(3.2) Sµ(x1, . . . , xm) =
|xµi+m−ij |
|xm−ij |

.

Sµ can be represented in terms of Hk by Jacobi-Trudi identity [2][A.5]:

(3.3) Sµ = |Hµi+j−i|.
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As a special case of the equation 3.3 when k = 1, i.e., µ = (µ1), we have S(d) = Hd.
So

(3.4) Hµ = S(µ1) · . . . · S(µk) =
∑
ν

KνµSν .

The sum on the right runs over all partitions ν of d = |µ|. Kνµ are the Kostka
numbers, if we apply Pieri’s rule to the second equation, we have the Kνµ is the
number of ways one can fill the boxes of the Young diagram of ν with µ1 1’s, µ2

2’s, up to µk k’s, in such a way that the entries in each row are nondecreasing, and
those in each column are strictly increasing.
Especially, these integers Kνµ satisfy Kµµ = 1 and Kνµ = 0 if µ > ν, i.e., if the
first nonvanishing µi − νi is positive. One can show this gives a total order on the
set of partitions of d, and if we arrange the Sν on the right hand side of 3.4 in the
decreasing order, then the transition matrix (Kνµ) is an upper triangle matrix with
diagonal elements equal to 1. So it is invertible and its inverse is also a integer
matrix, as a consequence of this, we have:

Lemma 3.1. All the Uµ form a Z-basis of Rd when µ runs over all partitions of
d.

The assertion is from the following theorem[2][Corollary 4.39](which is proven in
terms of the corresponded formula of characters) and the above discussions about
Kµν .

Theorem 3.2 (Young’s rule). The integer Kνµ is the multiplicity of the irreducible
representation Vν in representation Uµ, i.e.:

(3.5) Uµ =
⊕
ν

V ⊕Kνµν .

Now we can prove Theorem 2.2:

Proof. From lemma 3.1, we have Hµ form a basis of Λ and Uµ form a basis of R,
so we know φ is a well-defined surjective additive homomorphism. To show it is a
ring isomorphism, it suffices to verify:

(3.6) Uµ = Uµ1 ◦ · · · ◦ Uµk .
But this is just from the definition of Uµ and 2.1. To prove the rest of the theorem,
one compare the equation 3.4 and 3.5 and use the fact (Kνµ) is invertible as an
integer matrix. �
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