1 Cohomology of Affim Schomos
Thm lat R be a noetherian ring, $X=$ spral l and M an R-molnle. Then

$$
1 t^{\therefore}\left(x, \tilde{m}^{2}\right)=0 \text { for } \quad \therefore>0
$$

Finf we neal
Prop If I is an injectime R-mollh Then \hat{I} is a flasqum shef.
[Se- Hortshorne III prop 3.4]
pf f thr
Give M, we con choose on injectine vasulata

$$
0 \rightarrow M \rightarrow I^{0} \rightarrow I^{\prime} \rightarrow \cdots
$$

By the prop, we hare or flasgm vocolutio
$0 \rightarrow \tilde{m} \rightarrow \tilde{j}^{\prime} \rightarrow \tilde{j}^{\prime} \rightarrow \cdot \sim$
The ink $H^{\circ}(x, \hat{\mu})=\frac{\left.k \operatorname{Rer} \Gamma\left(\Phi^{\dot{j}}\right) \rightarrow T \tau I^{\prime \prime \prime}\right)}{i n \Gamma\left(子^{(-1}\right) \rightarrow \Gamma\left(\cdot 7^{\prime}\right)}$

Howerver,

$$
\begin{aligned}
\Gamma\left(\widehat{I^{0}}\right) & \rightarrow \Gamma\left(\widehat{I^{\prime}}\right) \rightarrow \\
\dot{W} & \cdots \\
I^{0} & \rightarrow J^{\prime} \rightarrow
\end{aligned}
$$

Threh $\quad H^{\circ n}(x, \tilde{\mu})=0 \quad f \quad r>0$.

2 May-r-Vi.atoris
Thn Given an opon cowne $\{U, U)$ y \bar{x} and $=\operatorname{sh} f$ J, then exirl,
a long exaf seg.

$$
\begin{aligned}
& \rightarrow H^{\circ}(x, z) \rightarrow H^{i}(u, z) \oplus H^{\circ}(v, 7) \\
& \rightarrow H^{\circ}(u \cap v, z) \rightarrow H^{i^{\prime}}(x, 7) \ldots
\end{aligned}
$$

whem the niddle two map. an the sumand d.iff-arcos of rortriction

3 Cohonology $f \mathbb{P}^{\prime}$
Lo k be a fi-ld.
For te firit appl.ati-, ne compuh the cohourlogy $H^{\prime \prime}\left(\mathbb{P}_{k}^{\prime}, \theta(n)\right)$. lot's stoet with $n=0$, ite $\theta_{\mathbb{P}}$.
we use the sta-dard corver

$$
\begin{gathered}
u_{0}=\operatorname{spmek}_{p}\left[\frac{x_{1}}{x_{0}}\right]=\operatorname{spmk}[t] \\
u_{1}=\operatorname{spmk}\left[\frac{x_{0}}{x_{1}}\right]=\operatorname{sp-ck}\left[t^{-1}\right] \\
u_{0}: u_{0} \cap u_{1}=\operatorname{speck}\left[t, t^{-1}\right)
\end{gathered}
$$

Then Maye.. Vi'eten's qua,

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\mathbb{P}^{\prime}, \theta\right) \rightarrow H^{0}\left(u_{0}, \theta\right) \oplus H^{0}\left(u_{1}, \theta\right) \\
& \Leftrightarrow H^{0}\left(u_{01}, \theta\right) \rightarrow H^{\prime}\left(\mathbb{P}^{\prime}, \theta\right) \rightarrow H^{\prime}\left(u_{0}, \theta\right) \\
& \otimes H^{\prime}\left(u_{1}, \theta\right)
\end{aligned}
$$

This can be ilhetifiol wik

$$
\begin{aligned}
& 0 \rightarrow H^{\circ}\left(\mathbb{R}^{\prime}, 0\right) \rightarrow k[\in] \oplus k\left[\epsilon^{-1}\right]_{\rightarrow}^{S} k\left[\epsilon, \epsilon^{-\prime}\right) \\
& \Leftrightarrow H^{\prime}\left(\mathbb{P}^{\prime}, v\right) \rightarrow 0
\end{aligned}
$$

Cuntinnivg tha sequener, mos sur

$$
H^{i}\left(\mathbb{R}^{\prime}, \theta\right)=0 \quad \text { who } \cdot \geqslant \geqslant 2
$$

In fact, the sam argel aho.,
Prap $H^{\prime}\left(\mathbb{P}^{\prime}, f\right)=0$ fon $\cdot \geqslant \geqslant$? and f quasicoloned.

To a-alyze the lomer.indiber we noh

$$
\delta\left(f(t), g\left(t^{-1}\right)\right)=f(t)-g\left(t^{-1}\right)
$$

So that

$$
\begin{aligned}
H^{0}\left(\mathbb{T}^{\prime}, \theta\right)=k e r \delta & \left.=k[t] \cap k \varepsilon t^{-1}\right] \\
& =k
\end{aligned}
$$

$\Delta \quad H^{\prime}\left(\mathbb{R}^{\prime}, O\right)=\operatorname{cok}-S=0$ since δ is cleerly surjoctive.

In gne.rl, veall

$$
A^{v^{\prime}}\left(\left\{u_{0}, u_{1}\right\}, \theta^{*}\right)=\frac{\left\{g_{0}, \in k\left(t, t^{n} j^{*}\right\}\right.}{\left\{f_{0} / f_{1} \mid f_{0} \in k C \in\right]^{*}}
$$

Sincu $\left.k \in \epsilon_{1} \epsilon^{-1}\right\}^{+}=\left\{a \epsilon^{n} \mid a \in K^{-}\right.$ $n \in \mathbb{Z}$?

$$
\left.\& \quad k<t^{ \pm}\right)^{x}=k^{*}
$$

We s.e the

$$
\mathscr{H}^{\prime}\left(\left\{u . .^{\prime}, e^{+}\right) \cong \mathbb{Z}\right.
$$

Uader this isonorphisu $n \in \mathbb{Z}$
to the clasi of $g_{\sigma_{1}}=t^{n}$
Recll $\breve{H}^{\prime}\left(x, \theta^{-}\right)=p_{i} c(x)=p \cdots p$ f lin bulb.
for any (nicu) sicher λ
The line buale e.correspodig to

$$
g_{01}=t^{n} \text { is pre..ily } L=\theta_{\mathbb{P}_{1}}(n)
$$

Reall Helt to go fron $L t$ be cacy-h, we usw a diagra

$$
\begin{aligned}
& L l_{u_{0}} \leftarrow \underset{\varphi_{0}}{\sim} \theta_{u_{0}}^{\vdots} \dot{\sigma}_{u_{0}} \\
& \left.L\right|_{u_{1}} \xrightarrow[\theta_{1}]{\sim}
\end{aligned}
$$

Let $u s$ visen ϕ_{0} as the r-farnene iso. The $1 \in \theta_{u_{0}} g o a$ to $t^{\wedge} \in \theta_{u_{1}}$ und gon. Then M.V Can be identifriel w.th

$$
\begin{gathered}
\left.\left.0 \rightarrow H^{0}\left(\mathbb{R}^{\prime}, \theta(n)\right) \rightarrow k r \in J \oplus k \in \epsilon^{-1}\right]\right)^{S} \\
\left.\xrightarrow{\longrightarrow} k \in, t^{-1}\right] \rightarrow t^{\prime}\left(\mathbb{R}^{\prime}, \theta(n)\right)_{-10}
\end{gathered}
$$

wh $\quad \delta\left(f(t), g\left(t^{-1}\right)\right)=f(t)-t^{n} g\left(t^{-1}\right)$
So

$$
\begin{aligned}
H^{0}\left(R^{\prime}, \theta(n)\right) & =k \operatorname{er} \delta \\
& =k[t] \cap t^{n} k\left[t^{-\prime}\right)
\end{aligned}
$$

whe $n<0$, we oet

$$
H^{0}\left(p^{\prime}, \theta(n)\right)=0
$$

hh.

$$
\begin{aligned}
& n \geqslant 0 \\
& H^{n}(\mathbb{P} 1, \theta(n))=\left\langle 1, t, \cdots t^{n}\right\rangle \\
& \cong k^{n+1}
\end{aligned}
$$

Fu,

$$
\begin{aligned}
H^{\prime}\left(\mathbb{P}^{\prime}, \theta(n)\right) & =\operatorname{coker} \delta \\
& =\frac{k\left(\epsilon, t^{-1}\right)}{k(t]+t^{n} k\left[t^{-1}\right)} \\
& =\frac{k\left(t, t^{-\cdots}\right)}{} \\
< & -t^{n-t^{n}, 1, t_{1} \cdots>}
\end{aligned}
$$

Whe $n \geqslant-1$

$$
H^{\prime}\left(\|^{p}, e(n)\right)=0
$$

if $n \leq-2$

$$
H^{\prime}\left(\mathbb{P}^{\prime}, \theta(n)\right) \cong k^{-n+2}
$$

Sammorizio
Thr

$$
\begin{aligned}
& H^{0}\left(\mathbb{P}^{\prime}, \theta(-)\right) \equiv \begin{cases}k^{n+1} & , f n \geqslant 0 \\
0 & \text { oforn }\end{cases} \\
& H^{\prime}\left(\mathbb{P}^{\prime}, \theta(n)\right) \cong \begin{cases}k^{-n+2} & , f n \leq-2 \\
0 & \text { oferuive }\end{cases}
\end{aligned}
$$

$\xrightarrow[\text { Thm }]{\text { Th-of on } \mathbb{P}^{\prime}}$ if a coherz-t shaf oon \mathbb{P}_{k}^{\prime}, then t $^{i}\left(\mathbb{P}^{\prime}, F\right)$ is fincte dimans.l. *.
rf $w \cdot \operatorname{sen} H^{i}\left(P^{\prime}, F\right)=U$ wh $i \geqslant 2$. So we juit how t pm funtanos $f=0,1$.

Reall $F=\tilde{\mu}$, h M is o f.g. gradel $\operatorname{sic}\left[x_{0}, x_{1}\right]$ molut.
we co find an exaf sor. 1 $\underset{0 \rightarrow}{\text { node. }} K \rightarrow \bigoplus_{i=1}^{N} S(n . \cdot) \rightarrow M \rightarrow 0$ giving an exacl sor f colurat shacus

$$
0 \rightarrow \frac{\tilde{k}}{{ }^{\prime}} \underset{x}{\tilde{x}} \rightarrow \Theta \theta\left(n_{1}\right) \rightarrow F \rightarrow 0
$$

W. iffoil

$$
\Leftrightarrow H^{\prime}(O(n \cdot)) \rightarrow H^{\prime}(J) \rightarrow 0
$$

which iurhion finilon-rif fo H^{\prime}.
This applest K. Thref
($) H^{\circ}\left(\theta(n,-1)-H^{\circ}(F) \rightarrow H^{\prime}(X)\right.$
graod finconers of $\mathrm{H}^{\circ}(子)$.

4 Coch Cohomulogy
We woat to extend the Mayev-Vi.atms technique te sevel opa- sh. Thir leal, ts (high,) Čah cuhouvlogン.

Givenon opon $\operatorname{com} U=\left\{U_{0}\right)$ of a spac X, Sat.

$$
u_{i, \ldots i_{n}}=u_{i} \cap \ldots \cap u_{i}
$$

Give- a sy $F \in A b(x)$, a Coit p-cochai- is a colleotia $\alpha_{i} \ldots i_{p} \in J\left(U_{i}, \ldots i_{p}\right)$
s.f $\alpha \therefore \ldots i_{p}=0$ if indicor as rapotel
ad $\alpha_{\sigma\left(i_{0}\right) \cdots \sigma_{i p}}=s i g n(\sigma) \alpha_{i_{0} \cdot-i_{p}}$
fu ary pormtitu σ.
Let $\check{c}^{p}(u, f)$ denot grap of p-cochan
$W=$ defin te čoll cubun-dang b^{\prime},

$$
\partial: c^{p}(u, f) \rightarrow c^{p+1}(u, F)
$$

b^{b}

$$
\left(\partial \alpha i_{i} \ldots i_{p+1}=\left.\sum(-1)^{k} \alpha_{i, \ldots i_{1}-1 i_{p+1}}\right|_{u_{i,-1 p}}\right.
$$

(llare a man, om.t.)
Lemma $\partial^{2}=0$

Dof Th pten Čech corhoullyy grap

$$
\begin{aligned}
\bar{V}^{p}(u, 7) & =H^{p}\left(c^{\bullet}(u, F)\right) \\
& =\frac{k \cdot r \partial: c^{\rho} \rightarrow c^{p+1}}{i_{r} \partial c^{p-} \rightarrow c^{p}}
\end{aligned}
$$

One con take the linit

$$
H^{p}(x, z)=\lim _{\vec{u}} H^{p}(x, r)
$$

as befon. Howank, tum sonere, d

$$
I^{p}(x, F) \nexists^{\prime} 1^{p}(x, j)
$$

The conclesi- ${ }^{13} H^{p}$ is not good for thoortid purpoise, but it ic gool for computition. Ifere is the $k \rightarrow y$ det/roidr.
Def An ope- com U is callod a Leray cover w.r.t to $F \cdot f$

$$
\left.\begin{array}{rl}
& \text { I }^{\prime}\left(u_{i} \ldots i_{2}\right.
\end{array}, f\right)=0 \quad \forall p>0
$$

Thm if U then Leray w.r.f $t ?$

$$
\mathcal{H}^{p}(u, F) \cong H^{p}(x, F) \quad \forall p .
$$

we give to prof aftor sone (emno).
lemme For ary open cover U

$$
H^{0}(X, z)=H^{\circ}(U, 7)
$$

pf Thene is a hamonuephise

$$
\begin{aligned}
H^{0}(x, 7) & \rightarrow \dot{H}^{\circ}(u, 7) \\
f & \longrightarrow\left(f l_{u_{1}}\right) .
\end{aligned}
$$

This is an isomorphism

$$
\text { because } 7 \text { is } a \text { sh-f }
$$

lemme if

$$
\begin{aligned}
& \text { is exait } \therefore \rightarrow A B(x) \rightarrow C \rightarrow 0 \\
& H^{\prime}\left(U_{i,-c_{\rho}}, a\right)=0 \quad \forall i, \ldots i_{p}
\end{aligned}
$$

The fern is a long erocet asy.

$$
\rightarrow \breve{H}^{\prime}(u, a) \rightarrow \breve{H}^{\prime}(u, \beta) \rightarrow \cdots
$$

of Th. $h_{\text {opotherie }}$ i-phiar ten $i=$ a short exact sas

$$
\sigma \rightarrow c^{\prime}(u, a) \rightarrow c^{\prime}(u, b) \rightarrow c^{\prime}(u, e) \rightarrow 0
$$

This given a long exal 307. 17
lemne if f is flesq~, $H^{p}(U, z)=0$ $\forall p>0$.
pf of the we know to $p=0$ casw, so we no-l to chat it $f p>0$. Cansider te sof.

$$
0 \rightarrow f \rightarrow g(7) \rightarrow C(F) \rightarrow 0
$$

from long ago We ham

$$
\begin{aligned}
& 0 \rightarrow H^{0}(7) \rightarrow H^{0}(B(z)) \rightarrow H^{0}(e(z)) \rightarrow H^{\prime}(z) \rightarrow 0 \\
& (x) O \rightarrow \check{H}^{\circ}(z) \rightarrow \check{H}^{0}(y(z)) \rightarrow \tilde{H}^{0}\left(e(z) \rightarrow H^{\prime}(z) \rightarrow 0\right.
\end{aligned}
$$

The croow $v i s$ an iso by H S-lamus. So the p=1 cald is doun

Fio (*), $\tilde{H}^{\prime}(e(7)) \stackrel{\sim}{\longrightarrow} H^{2}(7)$
Now we houe

$$
\begin{aligned}
& H^{2}(F) \doteq H^{\prime}(C(F)) \\
& \downarrow \\
& H^{2}(7) \simeq H^{\prime}(C(7))
\end{aligned}
$$

This prow, $\rho=2$; atc.

SCohomolugy of \mathbb{P}^{n}
Thn Suprix X is a soportd nouthoi． schare al F is cohor．t（ar even quesicolut）．てhーの
for any affio opon coun u

$$
f x \quad H^{p}(x, 7) \lesssim \tilde{H}^{p}(u, 7)
$$

If Sines $U_{i, \ldots i_{a}}$ is affin ad no－tcon．．．n（by He assuption，）

$$
1 t^{P}\left(u_{i, \ldots}, F\right)=0 \quad \forall r>0
$$

Thref U is Leray．II
Now wa come the $k=y$ colculeh．

Thm $F_{i x} \mathbb{P}=\mathbb{P}_{R}^{d}$, whe R_{i} is nostorn.

(2) $\quad H^{\prime}(\mathbb{P}, \theta(n))=0$ for $1^{\prime} \neq 0$, d

$$
(3) \mathbb{H}^{d}(\mathbb{P}, \theta(n)) \cong H^{0}(\mathbb{P}, \theta(-n-d-1))^{*}
$$

Rmk $R\left[x_{0}, \cdots x_{k}\right]_{n}$ is a fren modil f rank $\binom{n+d}{d}$
by wall known conabing formers.

