Cohomology of Projectino Schemes We wont t roturn t he alg b-aire story. $f: x$ an algabianelly clucud fald t. lemma if $x \subset \mathbb{P}_{k}^{n}$ is a clos-d subschme all of whore componet heon dim $=d$, there exists on open affire coner $u=\left\{u_{0}, \cdots u_{d}\right\}$
if We clai- we can ful hyverph

$$
H_{0},-H_{d} \subset \mathbb{P}_{k}^{n}, \quad, E \cdot x \cap H_{d} \cap \cdot-H_{d}
$$

$$
=\varnothing
$$

Then me tak= $U_{\mu}=X-H_{i}$
We con prom the clain by inhationd. Suppore $d=1, i s . X$ is a fin.te collection f (clued) p t.
Then we cor fird H_{0} whid avoich ken $p b_{r}$, since $k=\bar{k}$. Whe $d>1$, we choosin it d s.t. $x \cap 1 t_{d} \neq 6$. Sinc. He dimensiu $f x \cap H d$, drop, we're douse Ly induat-

Prop if $x \subset \mathbb{P}_{k}^{n}$ is on irrolish clocal subcohon, of I is a colurat sheofor. 6 .
a) $\lim _{k} H^{\circ}(x, 7)<\infty \quad \forall$:
b) $H^{i}(x, f)=0 f \Leftrightarrow \lim x$

If: LE $\dot{s}: x \hookrightarrow \mathbb{P}_{k}^{n}$ den.te the in clasin, the $S_{i} F$ is a cotherel sul- - \mathbb{P}^{n} ad

$$
\mathbb{H}^{\circ}(x, f)=H^{\circ}\left(\mathbb{P}_{h}^{n}, \dot{s}, f\right)
$$

Theor f a) follows for what me provel eoclior $f \mathbb{P}_{k}^{n}$.
By the previon, lomm X has opm affich corner

$$
u=\left\{u_{0}, \ldots u_{d}\right\}, d=d x .
$$

Theren

$$
H^{\circ}(x, z)=H^{\prime}(u, z)=0
$$

$h i>d$

It follous the

$$
\left.\operatorname{dir} H^{i}(x,)_{\lambda}\right), \quad i=0, \ldots d
$$

gives uoffal isomorphien invar.its
when X is a reduc.el

$$
\operatorname{dim} H^{\circ}\left(x, e_{x}\right)=1
$$

because global reguler funation \rightarrow constant.
In particla wh X is a nonsinguler irredecirfu projective curve, we gel only one intoresting nunb.

Pef T The ganus of x is

$$
g=\operatorname{dim} H^{\prime}\left(x, \theta_{\lambda}\right)
$$

we do one computation
Thm if $x<\mathbb{P}_{k}^{2}$ is detinid by a
dagras polynom.l. $g=\binom{d-1}{2}$
pf Led $:: x \hookrightarrow \mathbb{T}_{k}^{2}$ lent the incuse We have on exact sop,

$$
0 \rightarrow d_{x} \rightarrow \theta_{\mathbb{P}^{2}} \rightarrow i_{4} \theta_{x} \rightarrow 0
$$

If f is a defining polynum.l $\& x$,

$$
d_{x}=\widetilde{(f)} \cong \widetilde{S(-d)} \cong \theta_{\mathbb{P}^{2}}(-d)
$$

Also, since i_{n} is exact,

$$
H^{\prime}\left(x, \sigma_{x}\right) \equiv H^{\prime}\left(\mathbb{N}^{\prime 2}, \therefore \theta_{x}\right)
$$

Thanet, we ham

$$
\begin{aligned}
& H^{\prime}\left(\mathbb{P}^{2}, \Theta_{\mathbb{P}^{2}}\right) \rightarrow A^{1}\left(x, \theta_{x}\right) \rightarrow H^{2}\left(\left(\mathbb{P}^{2}, O(-1)\right)\right. \\
& 0
\end{aligned}
$$

The ref n

$$
\begin{aligned}
& \text { ret } \\
& H^{\prime}\left(x, \theta_{x}\right)=H^{2}\left(\mathbb{P}^{2}, \varphi(-d)\right) \\
&=S_{d-3}
\end{aligned}
$$

uh $S=K(x, y, z)$. The dimension is easily compathel ar steful
${ }^{2}$ Kählor differentids
Let X be a schame of finik typu a an alg dosed froll k.
Thm/Dof There exist a coloreat shod $\Omega_{x / k}^{\prime}=\Omega_{x / k}$ such thes $\Omega_{x / k} l_{u}=\widetilde{\Omega}_{R}$ fu ary affin opem SpecR $C X$. If X / k is a nonsingl variaty f dim. $n, \Omega_{x / k}^{\prime}$ is locally f foe f vant n.
S-e It orfshorn Chop 11, soot 8 .
3 Serre duality fur curves For the rest of this seaction X will denote a nonsinguler projeet curve ($=1$ dim'l schom) aver $k=\bar{k}$. A point of X mean a closel point (which is whit one meon classicly bya p^{6}).

Than Ω_{x}^{\prime} is a line bualle, callal the cononiad line luallo.
Given a divism D, Let

$$
\Omega_{x}^{\prime}(D)=\Omega_{x}^{\prime} \Theta \theta_{x}(D)
$$

Serre dualit, (algaliaic worsion)
There is an isomorphisn

$$
H^{\prime}(x, v(D)) \cong H^{0}\left(x, \Omega_{x}^{\prime}(-D)\right)^{*}
$$

for ony divisa D an X.
Cor The genus $g=d H^{0}\left(X, \Omega_{x}^{\prime}\right)$

Let $k(x)=$ function fiold of x
we def.~ he viag of adelor by

$$
R=\left\{\left(r_{p}\right) \in \prod_{p \in X} k(x) \mid r_{p} \in \theta_{p}\right.
$$

whe $x=$ closel pts of x
we ham a diagund eaboldig

$$
k(x) \subset R
$$

$$
f \longmapsto(f)_{p \in x}
$$

For ecol divior $D=\sum n_{p} p$
let $R(D)=\left\{\left(r_{p}\right) \in R \mid\right.$ ord $p_{p} r_{p} \geqslant-n_{p}$ $\forall p \in \operatorname{supp} D$?

Prop $H^{\prime}(x, \theta(p))=R /(R(D)+k(x))$
Pf Let $K(x)_{x}=\underset{i}{\text { constat } K(x)}$ shed assocneted we have an eooct sequerce

$$
0 \rightarrow \theta_{x}(\theta) \rightarrow K(x)_{x} \rightarrow K(x)_{x} / \theta(0) \rightarrow 0
$$

Since $K(x)_{>}$is f lesqe, the gat

$$
\underbrace{H^{0}\left(K(x)_{*}\right)}_{K(x)} \rightarrow H^{\circ}(K(x) * / \theta(D)) \rightarrow H^{\prime}\left(\lambda, 0_{\lambda}(D)\right) \rightarrow 0
$$

Ona duch, $K(\lambda)_{x} / O(D)$ is a se f sk y scape shoon $\left.\bigoplus_{p} K(n) / \theta \omega\right)_{p} \Rightarrow \mid 0^{\circ}\left(K(N)_{n} / \theta(\theta) \mid=R / R(D)\right.$

Set $\Omega=\Omega_{k(k) /_{k}}$. Thir is shocl 18 be intueptl as h space 1 retioil d.fferahe forn, on X.
leb $p \in x$. Sincu $e_{x p}$ is a d.v.r n ith valuation ordp: $k(\lambda) \rightarrow Z \cup\{\infty$),
then exirt on elvent $\in \in m_{p}$ which generete ce maxina idel. t plays the role f a locl coordial, ad it is usaly callal a loal unifurmizer. If is not uniqu. The complotin of $k(x)$ w.v.t the valuah ords is isonouphiz to $k((t))$

Thm/Def if $\omega \in \Omega$, the copficient of $\frac{1}{t} d t$ of heiner of w in $k(E \mid) d t$ is indeponben $f t$, and denatel by $\operatorname{ros}_{p}(w)$. The sum

$$
\sum_{p \in x} \operatorname{res}_{p}(w)=0
$$

when $k=\mathbb{C}$, these staburente follow earily from Cauchy's formmla and $S t_{\text {okse' frager. For therend curn }}$ soe Sorre's book "Algabraic Groups onl Closs fields".
we lefin a pairing

$$
\begin{aligned}
& R \times \Omega \longrightarrow k \\
&\left\langle\left(r_{p}\right), w\right\rangle=\sum_{p} r * s_{p}\left(r_{p} w\right)
\end{aligned}
$$

Gim $w \in \Omega$, sel ood $\omega=$ ordpf, uhe $\omega=f d G$ fo son locd uar.formiza, and $(\omega)=\sum_{p}(0-d, \omega)_{p}$

Giv $D=\sum_{n_{p} p}$, we con idutity

$$
H^{\circ}\left(x, \Omega^{\prime}(-\Phi)\right)=\left\{\omega \in \& \mid \text { ord } \omega \geqslant+n_{p}\right\}
$$

lemma if $\left(r_{p}\right) \in R(D)+k(x)$ and $\omega \in H^{\circ}(\Omega(-D))$, the $\left\langle\left(r_{p}\right), \omega\right\rangle=0$
pf If $\left(r_{p}\right) \in R(D)$, ord $p_{p} \geqslant-n_{p}$ which ord ${ }_{p}$ ar $\geqslant+n_{p}$. Thareh $\operatorname{res}_{p}\left(r_{p} \omega\right)=0$
If $f \in K(x)$, the \sum_{p} ves. $(f \omega)=0$ ${ }^{b} y$ the lart thm

Therot \langle,$\rangle inchare a paility$

$$
\begin{aligned}
& R /(R(D)+k(x)) \times t^{0}\left(\Omega_{x}^{\prime}(-D)\right) \rightarrow k . \\
& H^{\prime}(x, O(D))
\end{aligned}
$$

A precise forr f du_l. h_{T} is $\frac{\text { Thm (Seme })}{\text { is nondegenenb }}$

Full details con b fund in Serie; book. Homeren, we cen explain te i.e. We can write

$$
\Omega=\bigcup_{D}^{U} H^{\circ}(\Omega(-D))=\underset{D}{\lim _{D}} H^{\circ}(\Omega(-D))
$$

This is a 1 dime vecto, spaca one $K(x)$. On the oth haed

$$
J:=\lim _{\overrightarrow{0}}(R / R(\partial)+k(x))^{*}
$$

ca olsu be given the stimet of $k(x)$-u.s.
Prop (a) $\left.\operatorname{din}_{k(x)}\right] \leq 1$
(b) $<$, \rangle inducus a- injootine kow-lin mop fron $\Omega \rightarrow J$

Cor $\quad \Omega \cong J$
To finish therrof, ans anoals t cheak the isouorphion is comp-till ath te foltrotim indraed $b \geqslant D$.

4 Riemann-Roch
Lat X be a curve = nonsingel redad irraluabe one din's proilobim varist on $k=\bar{k}$.
Let $g=g$ onus $f x$.
Given a divisor $\partial \sum \sum n_{p} p$
Sat $\log 0=\sum n_{p} \subset z$
and

$$
\begin{aligned}
l(D)= & \left\{f \subset k(x) \mid \forall p, \text { ordp} f \geqslant-n_{p}\right\} \\
& U\{0\}
\end{aligned}
$$

We rtah

$$
\frac{\text { Tham }(\text { Riemann; inequaht) }}{l(D) \geqslant \operatorname{deg} D+1-g}
$$

Thir u.ll be sharpenol bo an equality shortly.

Gimen a nonzero ratial
l-furm aro $\Omega_{k(x) / k}$, it i, divis.

$$
(\omega)=\sum_{p o x}^{\sum\left(o r d_{p} \omega\right) p}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { lemma } \\
(\omega) \sim\left(\omega^{\prime}\right) \text {. } \omega, \omega^{\prime} \in \Omega_{k(x) / s}-\{\nu\rangle \\
\end{array} \\
& \text { of } w^{\prime}=f \omega w, r \quad f \in k(x) \\
& \text { al }\left(\omega^{\prime}\right)=(\omega)+(f)
\end{aligned}
$$

Def A canonicel divisor is a divisus of the form (a). This is treditionl writton as K. (Tho lemme saye thet $t \in$ linecer equivaloen clecs is $w=l l$ definel.)

Thm (Riemann-Roch)

$$
\ell(D)-\ell(k-D)=\log D+1-g
$$

