I Eulercharacteristics \& Rienome-Roch
Giver a colorent shof F on a propuch solur Y, we definu its Fulter chorecturistic byo

$$
\begin{aligned}
x(y, f) & =\sum_{i=0}^{\infty}(-1)^{i} \operatorname{din} H^{\prime}(y, F) \\
& =\sum_{i=0}^{\operatorname{lin} x}(-1)^{i} \operatorname{d} H^{\prime}(y, z)
\end{aligned}
$$

Han is th $k=>$ fod.
lemma if

$$
0 \rightarrow f \rightarrow g \rightarrow j t \rightarrow 0
$$

is exaot, th

$$
x(x, g)=x(x, F)+x(x, \eta t)
$$

pt this fullow from the long - exact serquen ad the fullowing additcuity proporty:
if $\quad 0 \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow 0$
is an exact of fin de V ach
spacos $\sum(-1)^{i} \operatorname{dim} V_{i}=0$

We con now reinterpret and Prow Riemann-Roch:

Than if D is a divisor on a genes g cure

$$
\ell(D)-\ell(k-D)=\log D+1-g
$$

Before proving, we vewrib be left sid as

$$
\begin{aligned}
\ell(D)= & \operatorname{din}_{H^{0}}\left(x, \theta_{x}(D)\right) \\
\ell(k-\partial) & =\operatorname{dim} H^{0}\left(x, \theta_{x}(k-\partial)\right) \\
& =\operatorname{dim}_{H^{\prime}}\left(x, \Omega_{x}(-D)\right)
\end{aligned}
$$

where me uso Sore duality fur
K lost stop.
There R.R. in equ.ralo.t to:
Chm $X\left(x, 0_{x}(0)\right)=\operatorname{deg} \theta+1-g$.
pf Le $D=\sum n_{p} p$. We prove this by, induction a

$$
m(0)=\sum \ln p!
$$

The base cess is $D=0$
Then $\mathcal{C}\left(x, \theta_{x}\right)=\operatorname{din} H^{0}\left(x, \theta_{x}\right)$

$$
-c H^{\prime}\left(x, \theta_{\mu}\right)
$$

b_{c} defin.ti.

$$
=1-g
$$

Next suppose- $m(\bar{D})>0$
if $D=n_{p} r+\cdots$ wite $n_{p}>0$
st $E=\left(n_{p}-1\right) p+\cdots$
Then we hove on exact sup.

$$
0 \rightarrow e(E) \rightarrow e(D) \rightarrow k(p) \rightarrow U
$$

when $k(p)$ is the skyscraper shaef ab p
Then $x(\theta(D))=x(\theta(\varepsilon))+x(k(p))$
By ind.itin $x(\theta(E))=b, F+1-g$
and wee also how

$$
x(k(p))=\operatorname{din} \underbrace{{H^{v}}^{v}(k(p)}_{1} \mid-\underbrace{\operatorname{ch} H^{\prime}(k(p))}_{0}=1
$$

So $x(e r(D))=\left(b_{y} G+1\right)+1-y$

If all te nomzen co-fficints f D are negatim, we can hind E with

$$
0 \rightarrow \theta \operatorname{col} \rightarrow \theta(E) \rightarrow k(p) \rightarrow 0
$$ al $m(\varepsilon)<m(D)$ and cunclud for siviter vocsons

2 Easy applicatiun of Riemann. Ruet
Lat x be a carme of genus og.
Prop deg $k=2 g-2$
pf: $p \operatorname{lng} D=k$ into R.R. t ortare

$$
\ell(k)-\ell(k-k)=\log k+1-g
$$

Given a nouzzero refiond difforentil ω, we c.e tak. $k=(\omega)$
Then we have on isouviphisn

$$
\theta_{x}(k)=\Omega_{x}^{\prime}
$$

definal hy

$$
\begin{aligned}
\theta(D)(u) & \longrightarrow \Omega_{x}^{\prime}(u) \\
f & \longrightarrow f \cdot w
\end{aligned}
$$

Theretore

$$
l(k)=h H^{\circ}\left(\Omega_{\lambda}^{\prime}\right) \cong g
$$

Simioly

$$
e(0)=d 1^{0}\left(v_{x}\right)=1
$$

Therh

$$
\begin{aligned}
& g-1=\operatorname{dog} k+1-g \\
\Rightarrow & \log k=2 g-2
\end{aligned}
$$

Given a noncritat moerchism

$$
f: x \rightarrow y
$$

betwas- curwr, we get an enturion \& fictl.

$$
k(y) \subseteq k(x)
$$

The digere of thir extansion is callad th degrae of f.

Prop/Qsi Fur all $p \in\rangle$
$\notin f^{-1}(p) \leqslant \operatorname{deg} f$
For all but finitly many pts called branch or ramification pto, equably holds.
Its poseible to give a morn precise statant. If t is uniformize at p and $q \in f^{-1}(p)$, the ramification index

$$
\begin{aligned}
e_{q}=\sigma r d_{q}(t) \quad & (r e m \operatorname{dra} \\
& \in \in k(y) \subseteq k(x))
\end{aligned}
$$

The For all $p \in Y$,

$$
\sum e_{q}=\log f
$$

Finally, we hem
The A degrees 1 morphiin $f: x \rightarrow y$ is on isomorphism

NB: This is false in higher dimensions or if ma allow singulaitho,

Thm \mathbb{P}_{k}^{\prime} is the only gonce 0 curn.
pf B_{y} what we proud earlior

$$
H^{\prime}\left(\mathbb{P}_{k}^{\prime}, e_{\mathbb{P}^{\prime}}\right)=0 \Rightarrow g\left(\mathbb{P}^{\prime}\right)=0
$$

Covoroh, s-ppun $g(x)=0$
Let $p \in X(a c l o i a l p t)$
$B_{y} R \cdot R$.

$$
\ell(p)=1+1-0=2
$$

Sinc. $H^{\circ}(O(p))=\left\{f \in k(x) \mid 0 \cdot d_{p} f \geqslant-1\right.$ $a \operatorname{ord}_{2} f=0$

$$
\forall q \neq p l
$$

we mast hom $\neq k \in H^{\circ}(\partial(p))$ which is nonconstant.
Viaw $f: X \rightarrow \mathbb{P}^{\prime}$ or a morphism such tht $f^{-1}(\infty)=p$ as a divisor \Rightarrow dug $f=1$ by previon reselt.
$\Rightarrow \quad f$ is ir a- isomorphinn

3 Projective Embeldings
A basic problon in classial as well as molen algebraic geometry is to daicila mops for a voirafy or schem to \mathbb{P}_{k}^{n}.
Therde, it simple, let
x be a variety. Given regula-
function $f_{u}, \ldots f_{n}$, suf

$$
F(x)=\left(f_{0}(a), \cdots f_{x}(x)\right)
$$

Then me gob a moophise

$$
x \geq V=\{x \in X \mid F(x) \neq 0\} \longrightarrow A_{k}^{n+1}(00)
$$

There an 2 prollen,
(1) V might nob equa x, so φ is only partilly defuad (2) if x is projective, then Here ane no globul fundion.

Let's solve (2), by replacing function $b_{y} a \quad b a s i s \quad f_{0}, \cdot f_{n} \in H^{0}(x, L)$ when L is a lina buade. Using c local t-ivilizith $L l_{u_{1}}=\theta_{u_{\text {. }}}$

$$
v \wedge u_{i} \xrightarrow{g_{i}, w_{i}} \mathbb{A}_{k}^{n+1} \mathbb{A}_{i}^{-}(0)
$$

If torns out tat the φ_{i} will patel to defore a morshire

$$
x \geq V^{\text {morrhim- }} \varphi_{L} 1 P_{k}^{n}
$$

era thoget th F_{i} usually won't.
(1) if st.ll on resuce, bat

Prop if L is gemertal $h y$ global section, ther φ_{L} is definal an all f X (ln class.al terwinulogy, L is bese point free.)

D-f L is called very amplo if it is generefl h_{y} gemerith by global suotion, ad ϕ_{L} give, a closed immorsin $X<\mathbb{P}_{k}^{n}$.
Returnig to curve, hase is a concrute criturion

Thu if D is a diviser on genus g curm x, the
a) $\omega_{x}(D)$ is genaratil b_{y} glubal Suction. if dy $D \geqslant 2 y$
b) $\theta_{-}(D)$ is very ampla if
deg $D \geqslant 2 g+1$
pf
wre hame ar exaif sel.

$$
0 \rightarrow \theta_{k}(D-p) \rightarrow \theta_{*}(\Phi) \rightarrow K(p) \rightarrow 0
$$

which gives

$$
1 t^{0}\left(\theta_{\infty}(\nabla)\right) \rightarrow 1 t^{\circ}(\operatorname{kep} 1) \rightarrow 1 H^{\prime}\left(\theta_{*}(D-p)\right)
$$

By Se-re dualigy

$$
\begin{aligned}
1 t^{\prime}\left(\sigma_{x}(D-r)\right) & \cong H^{\prime}\left(\Omega_{-}^{\prime}\left(-D+p^{\prime}\right)\right) \\
& \approx 1 t^{\prime}(\theta(k-D+p)) \\
& =0
\end{aligned}
$$

since be $k-D+l^{\circ}<0$
Therrh

$$
1 t^{\nu}\left(e_{\lambda}(D)\right) \rightarrow H^{\sim}(k(p))
$$

is surgechios. Thies iunhio. that then exist a sectu σ \& $H^{0}\left(\Theta_{\lambda}(D)\right)$
which dourn if veuith top. Sinethis hold, f a $U_{p,} \theta_{0}(D)$ is glubly genortel.

The proof for (b) ir sin.les. One hes

$$
\begin{array}{r}
0 \rightarrow \theta_{x}(D-p-q) \rightarrow \theta_{r}(D) \rightarrow k(\sin \in(q) \rightarrow 0 \\
0<\theta_{p} / m^{2} p
\end{array}
$$

and chocks lait mor on glolel soution is Surjective. This implios mr $x \rightarrow \mathbb{P}^{n}$ iniectine al injeefin un tougent spaco.

Giner a curm $x \subset \mathbb{P}_{k}^{n}$. Le $H \subset \mathbb{P}_{k}^{n}$ b. hyporplom suol tut $X \nsubseteq H$.

Tha $X \cap H$ is a forit sul.
Given $p \in X \cap H$, supron $t h$ ith coorlide I p ir non 2010, $k \quad p \in U_{i}=\left\{x_{1} \neq 0\right\}$ $U_{\text {c }}$. It is dafind b_{y} a linew pubalal $l \in k\left[\frac{x_{0}}{n_{i}}, \ldots \frac{x_{n}}{k_{i}}\right]$, we dofin K infersetim maltiplicily of if with x atp as $\quad m_{p}=$ ordpl (theris inlp.ll f.)

Det

$$
X \cdot H=\sum_{p \in X \wedge A} m_{p} p
$$

Det/lemne if A^{\prime} is a $20 l$ hyperpla not contaning $X, \quad X \cdot H^{\prime}$ is lina...ly equaler to $X \cdot H$. The conmon logeen is $\operatorname{deg} X=\operatorname{deg} X \cdot H=\operatorname{dg} X \cdot H^{\prime}$

Ex lb X beegenct I cure Such a curve is callal an elliptic cu.c. Le $p \in X, D=3 p$.
One h, $d_{\partial} k=2.2=0$
So R.R orim

$$
\begin{aligned}
l(D)-\underbrace{l(k-D)}_{\Theta_{0}^{\prime \prime}} & =\log _{0} D+1-1 \\
& =3
\end{aligned}
$$

Sincu $d_{y}<0$
Thereth mo ham on eubadly $x \subset \mathbb{P}_{k}^{2}$ Sinc. $d y D=3, \quad X$ is an enbulded a_{1} a cubic.

