1 Locally Fras Sheaver
Last time, me dofal
Dof A shel of R-modili, $m_{\text {on }}$ a ringed spen (x, R) is lucdly froe frenk n if Jan open com $\left\{u_{i} \mid\right.$ s.G. $\left.M\right|_{u_{i}} \equiv R_{u_{i}}^{n}$ Equivolently for schemr:

Def A coherent shef m an schem x is locilf frue of rak n if 7 a ope off con $\left\{u_{i} 1\right.$ st. $m l_{u_{i}} \equiv \widehat{m}$:, wh m_{i} is for of ronk \sim
Prop $I f R i s$ a noetherio ring, a finitl> genoodet R-molil M is projectin $(\tilde{m} \quad i s$ locull fran
(A prof can be found a pl09 1 Bourtak.'ts com- Alg. J
Withoit go.jy into lefa..l, thans one natuol exale f rings with noufces prosiotiCor locfer.) modubor. For non affirn schame, me haw:

Thn (a) $\theta_{\text {lpn }}(d)$ is loadl foan 1 rank I:
(b) if $d^{2}<0$, then $H^{0}\left(\underset{p^{0}}{(d)}\right)=0$ ad who $d>0$, k $H^{0}\left(\theta_{p p}^{p}(d)^{V}\right)=0$

$$
\operatorname{Hen} \quad m^{v}(u)=H_{c}\left(m l_{u}, O_{u}\right)
$$

(C) $1+$'s free iff $d=0$ (or $a=0$).
Pf Lt R=k bo ofiold

If M is a qrabl moll over $s=k\left[x_{0}, \cdot x_{1}\right)$
the $\left.\tilde{\tilde{M}}\right|_{u_{i}}={\tilde{M}\left[\frac{1}{x_{i}}\right]_{0}}^{\left.x_{i}\right)}$
Whe $M\left(\frac{1}{x_{1}}\right]_{0}$ is vinw-l ar an $R\left[\frac{x_{0}}{x_{0}},-\right]-m-d$ Whe $m=S(d)$, we see the $m\left[\frac{1}{x_{1}}\right]_{0}$ is a f.a. moluk gan $L_{Y} \frac{1}{x_{i}} e$.
The.. $\theta_{p^{n}}(d)$ is locally free.
For (b), for $d>0$, we hom that $H^{\circ}\left(\theta_{1 p n}(-d)\right)$ consist. f constant functian vanuhing on a degre. d hypersurfucu.
Thereh $1 t^{0}\left(\theta_{\text {Jp }}(-d)\right)=0$.

For the 2 al half, un chock

$$
\theta(d)^{v^{\prime}} \cong \theta(-d)
$$

Finally, if $\theta(d) \cong 0$, then

$$
H^{0}(\theta(d))=H^{0}\left(\theta(d)^{v}\right)=k
$$

Therefor (c) follows firm (b).
Def A real (or complex) vector -buale f rant n on a C^{∞}-manful X is $C^{\infty} m-p \pi: V \rightarrow X$ such ted there is an open cure $\left\{u_{1}\right\}$ mite isomorphism

$$
\left.f_{i}: \pi^{-1}\left(u_{1}\right) \xrightarrow{\sim} u_{i} \times \mathbb{R}^{n} \text { (or } \mathbb{C}^{n}\right)
$$

s.E. fie cumenter with reojeifioun and such that f_{0} of f_{i}^{-1} is linear on fibre. (This data is called a local trivial,z-fien)

Th Given a r gel (rasp. curphax)
vector bude $\bar{a}: V \rightarrow x$ of rant n anen a maniful, the shof of section,

$$
v(u)=\left\{\sigma: u \rightarrow \pi^{-1}(u) \mid \pi \circ \sigma=i d\right\}
$$

is naturally a loally frae moll f romk n or C_{\sim}^{∞} (rop $\mathbb{C} \otimes_{i R} C_{\lambda}^{\infty}$) Furkermos evy loally fore shef arices this way.
A sim.lar reiult holde for echere, sae Horfshorno p 128 . For this reain, algetruic goontiert teal to uns the terns "locaty fres shef" ad "veatur Lade" inturchangeall.

2 Nice schemes
Recall that we said all our schemes. Evan so, Hose can bo prelty wild. We various niconass cualitions we con impose

Dof A schem $\quad\left(x, O_{x}\right)$ is

1) $r e d e c a l$ if $O_{\infty}(u)$ is roherel $\forall U$
2)into $\underset{\|}{\|} \operatorname{ll}(f) \theta_{x}(U)$ is an intage dononn U
2) noral if $\mathcal{B}_{\lambda}(u)$ i.s on interialy \Downarrow clusel domain $\forall U$
3) reqular if its intugal all all local ring $\theta_{x, \infty}$ ae regulen.
Next, we need an analogne of $H 0$ It ausdorff axium. We start with He frllowing simple charaderization. The A top space X is Hansdurff \Leftrightarrow Hediagual $\triangle \subset X \times X$ is clusal

For the analogine we need:
Thm The categury of rachemes odm.ti problate. This mean thet gime $x \& y$ I $X \times y$ with projection morptizns $P_{k}: x=y \rightarrow x$ al $P_{Y}: x-y \rightarrow y \quad$ which are univeral in the senme thaf give

Solide arrous,

$$
\begin{aligned}
& z \rightarrow y \\
& 1 \\
& x \rightarrow e_{x \times y} \vec{r}_{r}
\end{aligned}
$$

7 a dottod arrou as a bou.
when $x=\operatorname{spec} A, y=B$,

$$
x \times y=\operatorname{spac}\left(A \theta_{z}^{\prime} B\right)
$$

In generd cese Hortahorne II thm 3.3 for the comstruation.

Frow the univoral prop, we get a morphis Δ a callod the diagual

$$
\text { is } \underbrace{x}_{x<-x x} \xrightarrow{1-1}_{\substack{1 x}}^{x} 1
$$

Def X is seperated if n_{λ} is a clogal imnorsin.
This is so basic that all schoms wa will encountor satiosto thils

Finally suppors we are give a morphism $X \rightarrow$ speok, ubom k is fiecl. This inolion tet the ving $O_{x}(u)$ ar k-algobies
Def A schan $X \rightarrow$ spec k is of finete ty R if it possoser a finit covar $S U_{1} \cong S_{p \rightarrow 0} R_{1}, 1$, when R_{1}.an finctaly geneatel k-algabi.

Findly we car redatine
Def $\quad X \rightarrow s_{p}=0 k$ an algabrane voriet, if it interel, seperatel cal of finitse typo (sum paplo assum only thet x is rednced).

3 Divisurs
To motivat stout with a comport Riemmon sarface X. Although there an no nonconstant holomorchice functusax,
thene plenty of noocontont maeromorphic function - it. The colleation of meromuobic functivns form, a f-Gl $\subset(x) \geqslant \subset$.
A basic problen going back ho Rienanis to consfrut ele-nt. of $\mathbb{C}(x)$ a.k preserihal zeros and poler. We record this in formitm by forniy a Finch formal sun $D=\sum n_{p} p, p a t$ $n_{p} \in \mathbb{Z}_{\text {. }}$, call.l a divisor. suf

$$
L(D)=\left\{f \in \mathbb{C}(x) \mid \operatorname{ard}(f) \geqslant-n_{p}\right.
$$ $\nvdash p$.

whem $\operatorname{and}_{p}(f)=m$ whem

$$
f(z)=a_{m} z^{m} \rightarrow a_{m+1} z^{m+1}+\cdots
$$

is the Laureent expansin abort P.

Riemann-Roch Prabhem What's dim $\mathbb{G}^{L} L(D)$? we w.ll see lifter thul this din is finibe.

To halp nith we introluce tho shaf

$$
\begin{aligned}
& \theta_{x}(D)(u)=\{f \in \mathbb{C}(x) \mid \forall p \in u, \\
&\left.f \geqslant-n_{p}\right\}
\end{aligned}
$$

Then $L(D)=1 f^{\circ}\left(x, \theta_{x}(D)\right)$
Before saying more, we introbher the schame thometic version.

Let us assum from now on that X is a normal (nootererion. saperatel) scheme, e.g. a nonsingular alg. vo...t \boldsymbol{l}_{7}.
Def A prime divisor $D \subset X$ is a closed ivreduriblo subset of codimension $1 \quad(\therefore$ e $\quad d-D=d i-x-1$) weil
A divisor is a finile fural lineer combinftio $\sum n_{1}$. D_{1}., wh $D_{1} \cdot \subset x$ are prine divisors ond $n, \in \mathbb{Z}$.
B_{y} assumptin, X is nord, and in particle intaral. This impli-1 that $V_{n}^{(c l e)} i r$ an intard lumain. ond as Ce vaniss orm nonengly dopen eut $\theta_{x}(c e) h o s$ a commor field of fruction $K(x)$, callal the funchin field of X. Element, $f(X)$ as callal ratiol functions .- X. A prime livisur $D-X$ a. b identif.el with a (nonclosed) pount $f x$ sneh the $\operatorname{din} \theta_{x, D}=1$ A ous dim intardf cload locel ri.g is disconthe valuation ring (seor At.yeh-Mas Dondl). Therafm ∇ a funch ordo: $K(x) \rightarrow \mathbb{Z}$ Soss s. (-.

1) $\operatorname{ord}_{D}(f \gamma)=\operatorname{crd}_{D} f \rightarrow \operatorname{ord} g$
2) ord ${ }_{D}(f+g) \geq m \cdot n\left(\mathrm{ar} \rho_{0} f, o-l_{0} q\right)$
3) $\operatorname{ord}_{D} f=\infty \Leftrightarrow f=0$

द) $\theta_{\mathrm{N}, \mathrm{D}}=\left\{f \mid \mathrm{col} \mathrm{D}_{\mathrm{D}} f \geq 0\right\}$

Det G.van a divijur

$$
\begin{aligned}
& D=\sum n_{i} D_{i} \text {, } \\
& \delta \rightarrow f \int_{x}^{\int_{x}}(D)(u)=\left\{f \in k(x) \mid 0-l_{D_{i}} \geq-n_{i}\right\}
\end{aligned}
$$

NB Hartstorm uses $\mathcal{L}(D)$ fo $\Theta_{\lambda}(D)$, bat moort pooph now te laot notitiu.

Def x is cillud locally factorial if all the lucel ring' $O_{x, p} a \rightarrow$ VF
We need 2 hard results fien commatitm Alg.b. (s... Matsu-)

Thm (Auslacb- - Buchabaun-Som-) A reguler locel ving is $V F D$

Thm A noetheria donai- is a UFD \Leftrightarrow every hagt one prime ir principl.

Thm if X is locally facturil, (e.j regulc) the $\theta_{x}(D)$ is loclf free of rank oun ($=$ inwortillu sh-f $=\operatorname{lins}$ bucle)
We neel
lemme if f and M are inuortible, th. so are $\mathcal{L}^{-1}:=\mathcal{J}^{V}$ and $\mathcal{L} \& M$.
pf Gxercisw
pfefthm when D is prine, $O_{x}(-D)$ is He idel shof of D. Thir is invertish by te previour than. In genod writ

$$
D=\sum n_{i} \cdot D_{1} \cdot=\sum a_{i} \cdot A_{i} \cdot-\sum b_{j} \cdot \beta_{j}
$$

$$
\text { with } a_{1}, b ;>0
$$

Then $\theta_{x}(0)=Q_{a} O\left(A_{i}\right)^{a_{i}} \otimes\left(\mathbb{Q} \theta\left(B_{j}\right)^{b_{j}}\right)^{-1}$ is invertuble b_{x} the lemma.

