Divisor Class Geoup
Lat X be a noial sopertl schere.
lemma/def $G i v e n$ a nunzero rotide furato $f \in K(x)^{\text {t }}$, the sim

$$
(f)=\sum_{D} \text { ord }(f) D
$$

is finite, Horrfor it defines o divisor A divisur of this form is alled principl

The set $\operatorname{Div}(x)$ of d ivious form on abelion group in an obvour may lemmo/des Th subset of principl divors Princ $(x) \subset \operatorname{Div}(x)$ frons a antg-oup. The quotient $C l(x)=\frac{D_{1 v}(x)}{P_{\text {rin. }}(x)}$ is call-d the divisor cless group.
pf Since ord ${ }_{D}$ is a valuation

$$
\begin{aligned}
& (f g)=\sum \operatorname{ord}(f g) D=(f)+(g) \\
& \left(f^{-1}\right)=\sum \operatorname{ord} f_{\rho}\left(f^{-1}\right) D=-(f) .
\end{aligned}
$$

Def Two divismi D, D^{\prime} are callad linealy equ.valont ($D \sim D^{\prime}$) if $D-D^{\prime}$ is principl.i.e. if Hev defin. He sanr elemunt of $C \mid(X)$

Thr $\sigma_{x}(D) \cong \theta_{x}\left(\partial^{\prime}\right) \Leftrightarrow D \sim D^{\prime}$
pf lnone direction. if $D^{\prime}-D=(g)$ Then $\theta(D)(u) \rightarrow \theta\left(D^{\prime}\right)(u)$

$$
f \longmapsto f \rightarrow g
$$

is an isomerph.sn.
Thm/D-f The set of isunuephirn classer of lime Lualle forms an abelion group Pic (x) callol the Picard group. The group opention is givan b_{y} (.

Suppose that x is locally facteril. Then $\theta_{x}(D)$ is a line buall.
lemmi if X is loc. factorid,

$$
\theta_{\lambda}(D) \otimes ण_{x}\left(\partial^{\prime}\right)=\theta_{\lambda}\left(0+D^{\prime}\right)
$$

Conequanfly, we have a homumophi.

$$
c(c x) \longrightarrow p_{1} \cdot c(x)
$$

Thm if x is locally facturil

$$
C l(x) \cong p_{1} \cdot c(x)
$$

we'll gine theral shorfly

2 lat Čech cuhomodoyy
Det Givun $J \in A b(x)$ and an opan coom $U=\{U \cdot\}$,

$$
\begin{aligned}
& \text { a (Cech) 1-cocyele is a coll-ction } \\
& f_{i j} \in \mathcal{F}\left(U_{i j}\right) \text { s.t } \\
& \left\{\begin{array}{l}
f_{i k}=f_{i i_{i}}+f_{1 k} \text { on } U_{i i_{k}} \\
f_{i i_{i}}=0
\end{array}\right.
\end{aligned}
$$

uhare U;; : Ui^nU; etc.
A 1-coboundory is cocyeln f, \because s.f

$$
f_{i j}=g_{i}-g_{j} \text {, when } g_{i} \cdot c f\left(u_{i}\right)
$$

The list čech gps

$$
\begin{aligned}
\tilde{H}^{\prime}(u, z) & =\frac{1-c a c y c l o s}{1-c o b o u-l o r i o n} \\
H^{\prime}(x, f) & =\lim _{\underset{\substack{u}}{ } \tilde{H}_{r=t i n e n d}^{\prime}(u, 7)}
\end{aligned}
$$

Thm $\tilde{H}^{\prime}(x, f) \cong H^{\prime}(x, 7)$

Thm let $\left(X, \theta_{x}\right)$ be a schem, then $P_{i c}(x) \cong H^{\prime}\left(x, O_{\lambda}^{x}\right)$ whene θ_{x}^{*} is shef units.
sketal Give $\mathcal{L} \in P_{i} \cdot(x)$. We can find a coum $\left\{\mathrm{Ce}_{i}\right\}$ and isomorphisus $\varphi_{n}:\left.f\right|_{u_{i}} \xrightarrow{\sim} \theta_{u_{i}}$
$O_{n} \quad u_{i} ; \quad \varphi_{i} \cdot \varphi_{i}^{-1}: \theta_{u_{i},} \leadsto \theta_{u_{i ;}}$ is given by multiplak l_{y} a u_{n} it $f_{i j} \in \theta^{*}\left(u_{i,}\right)$. Thins is a l-aocyole with valuor i- θ_{i}. Multiply.g $f_{i j}$ by a coboundory courosponds bo the sam lins buall \mathcal{L} with a difforent phoice of isomurphism $\varphi_{i}^{\prime}: \mathcal{I} l_{u_{i}} \rightarrow O_{u_{i}}$

This gives a honumon, fiem

$$
P_{i c}(x) \longrightarrow \bar{H}^{\prime}\left(x, \theta^{a}\right)
$$

Given an elemant of $\left.H^{\prime}(x,)_{\lambda}^{*}\right)$
it cor be valizel by a l-cocyed $\delta_{i j} \in \sigma_{x}^{*}\left(v_{i j}\right)$. We can use this t Luill a lise buall by gluig $O_{u .}$. to $O_{u j}$ us.j
$f_{i} ;$ This giner an inverse

$$
\mathcal{H}^{\prime}\left(x, \theta^{\prime}\right) \rightarrow p_{i c}(\lambda)
$$

3 Castia, Divisors
Le X be a nuink sat schens ar bef.
Def A Costias divisor is a gluld sectior of $K_{\lambda}^{*} / O_{+}^{-}$, when K_{-}^{*} is shat $U \mapsto K_{x}(x)^{*}$. U C.Div (x) denate the graup of Cortion divisw.

Cuncrotaly, a Corbion dinisor is given b_{y} a cullection $f . \in k\left(u_{1}\right)$
s. (. $f: / f_{j} \in$ er $\left(u_{i,}\right)^{*}$ for som op..

Coum \{ceif X. This implin,

$$
o \operatorname{ld} f_{0}=o \operatorname{l}{ }_{0} f_{i}
$$

whenem $D \wedge U_{i} ; \neq \varnothing$
The previous notion of divisor an callad weil divon, to distingurit them.
C.r. Sf.l, we associah the (we.rl) divis.

$$
\sum \operatorname{ord}_{0}(f,) D
$$

This \therefore easily suen to give a homonorphin

$$
C \cdot D i v(x) \rightarrow D i v(x)
$$

Thm if x is loc. factoing, the

$$
\text { Ca } \operatorname{Div}(x) \equiv \operatorname{Dir}(x)
$$

M S-e Hortshoun II prop G. 11

Thm if x is loc. faoturil.

$$
C l(x) \cong P, c(x)
$$

Pf. Conside the exat sequene

$$
1 \rightarrow e_{i}^{+} \rightarrow K_{i}^{*} \rightarrow K_{i}^{*} / \theta_{-}^{*} \rightarrow 1
$$

This gimes

$$
\begin{array}{cc}
H^{0}\left(x, F_{-}^{*}\right) \rightarrow C_{c} D_{i v}(x) \rightarrow P_{i c}(\lambda) \rightarrow H^{\prime}\left(x k_{i}^{*}\right) \\
d & \vdots \\
P_{1 i r c}(x) \rightarrow D_{i v}(x) & \ddots k_{i} \text { flesq }
\end{array}
$$

whioh inpli-i th flo.

