
Chapter 11

Complex algebraic curves

11.1 Topology of curves

Let us assume k = C throughout this chapter. We give Pn
C the classical topol-

ogy induced from the Euclidean metric. This is compact Hausdor↵. Given a
nonsingular projective curve X ⇢ Pn

C can be given the induced topology which
is what now use. It can shown to be independent of the embedding. We define
the sheaves Oan

X and C1
X of holomorphic and (complex valued) C1 functions as

follows. f 2 OX(U) if locally f extends to a holomorphic function on Pn
C. The

C1 case is similar. When equipped with these sheaves, X be comes a compact
one dimensional complex manifold or two dimensional C1 manifold. For his-
torical reasons, one dimensional complex manifolds are usually called Riemann
surfaces. The topological classification of these is well understood: it is given
by g holed torus for some unique g 2 N usually called the genus, but which we
will call the classsical genus. For instance P1

C is a sphere, so it has genus is zero.
Pictured below is a genus 2 surface.
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Figure 11.1: Genus 2 surface

To give a more rigorous definition of classical genus, we need a bit of al-
gebraic topology. Given a topological space X, the elements of first homology
H1(X,Z) are equivalence classes of oriented loops, where two loops are equiv-
alent if their di↵erence is the boundary of something. In the example pictured
above, a1, a2, b1, b2 gives a basis; two per “hole”. In general, we have
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Theorem 11.1.1. If X smooth projective curve over C, H1(X,Z) is a free
abelian group of rank equal to 2 times the genus.

There are really two assertions. First that rankH1(X,Z) is even, and in
particular finite dimensional. Second that the rank equals 2g. Assuming the
first part, which we will prove, define the classical genus c = 1

2 rankH1(X,Z).
Then the claim is g = c. We will prove a slight weaker statement, after the
basic tools are introduced.

11.2 de Rham cohomology

Rather than use homology, we will work with the dual notion of de Rham
cohomology, where we can develop the basic properties ab initio. Given a C1

(real) 2-manifold X, let E(X) denote the space of complex valued C1 1-forms.
An element of this ! is locally given by

! = f(x, y)dx+ g(x, y)dy

with C1 coe�cients. We say that ! is exact if there exists h 2 C1(X) such
that ! = dh, and closed if

@f

@y
=

@g

@x

holds locally. On a disk, these notions are equivalent.

Proposition 11.2.1 (Poincaré’s lemma). A 1-form on a disk is exact if and
only if it is closed.

This is easy to prove using integration. And this is something you do (per-
haps implicitly) in a di↵erential equations class. In general, exact always implies
closed, but not conversely. The failure is measured by the first de Rham coho-
mology

H1(X,C) = {closed C-valued 1-forms}
{exact C-valued 1-forms}

H1(X,R) can be defined the same way. A special case of de Rham’s theorem
says that

Theorem 11.2.2 (de Rham).

H1(X,C) ⇠= Hom(H1(X,Z),C)

H1(X,R) ⇠= Hom(H1(X,Z),R)

where the map sends ! to the line integral � 7! R

�
!.

Corollary 11.2.3. dimC H1(X,C) = dimR H1(X,R) = rankH1(X,Z)
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Since we didn’t really define H1 very carefully, we are not in position to
prove this. But it least tells us what information H1(X,C) contains.

We want to prove that dimH1(X) < 1 when X is compact. It is convenient
to also define the 0th cohomology

H0(X,C) = {f | df = 0}

Of course, these are just constant functions, when X is connected.

Theorem 11.2.4 (Mayer-Vietoris). If X = U [ V is union of open sets, there
is a long exact sequence

0 ! H0(X,C) ! H0(U,C)�H0(V,C) ! H0(U \ V,C) !

H1(X,C) ! H1(U,C)�H1(V,C) ! H1(U \ V,C)

Proof. We have a commutative diagram with exact rows

0 // C1(X)
s//

d

✏✏

C1(U)� C1(V )
d //

d

✏✏

C1(U \ V ) //

d

✏✏

0

0 // Ecl(X)
s // Ecl(U)� Ecl(V )

d // Ecl(U \ V ) // 0

where s and d are the sum and di↵erence of restrictions, and Ecl is the space of
closed 1-forms. The theorem now follows from the snake lemma.

Corollary 11.2.5. If X is compact, then dimH1(X,C) < 1.

Proof. By compactness, X has a finite open cover by disks. We prove the
corollary for any X which admits such a cover {U1, . . . , Un} by induction. By
Mayer-Vietoris,

H0((U1 [ . . . Un�1) \ Un) ! H1(X) ! H1(U1 [ . . . Un�1)�H1(Un)

The dimension of the left side is the number of connected components of (U1 [
. . . Un�1) \ Un and the dimension of the right is finite by induction.

11.3 The genus is bounded by classical genus

We will prove the following

Theorem 11.3.1. If X smooth projective curve over C, dimH1(X,C) = 2c for
some c, and the genus g  c.

In fact, g = c, but the proof of this is harder. To prove evenness, we need a
standard result from linear algebra.
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Theorem 11.3.2. If a finite dimensional real or complex vector space V car-
ries a nondegenerate alternating form h, i, then the dimension must be even.
Furthermore we can find a basis such that the form is represented by

✓

0 I
�I 0

◆

If subspace W ✓ V satisfies 8w,w0 2 W, hw,w0i = 0 (W is called isotropic) then
dimW  1

2V .

Before constructing the alternating form, let us quickly recall some facts
from calculus. A 2-form on a region D ⇢ R2 is integrated by

Z

D

(�)dx ^ dy =

ZZ

D

(�)dxdy

Z

D

(�)dy ^ dx = �
ZZ

D

(�)dxdy

This asymmetry has to do with the orientation of the plane. An orientation is
a choice of nowhere zero real 2-form (or n-form on an n-manifold), which tells
us which ordering is positive. Also the rules of exterior algebra imply

(fdx+ gdy) ^ (hdx+ kdy) = (fk � gh)dx ^ dy

Finally Stokes’ theorem says
Z

D

df =

Z

@D

f

when D has a smooth boundary @D orientated counterclockwise. To integrate
on a general two manifold X, we need to choose and fix an orientation: a
Riemann surface has a preferred orientation, which we use. We define a bilinear
form on E(X) by

h↵,�i =
Z

X

↵ ^ �

Lemma 11.3.3. This gives an alternating form on H1(X,C)

Proof. It is clearly alternating, since

h↵,�i = �h�,↵i
We have

hdf,�i =
Z

X

d(f�) = 0

by Stokes, since X has no boundary. Therefore this gives a well defined pairing
on cohomology.

Theorem 11.3.4 (Poincaré duality). This is a nondegenerate alternating pair-
ing on H1(X,C), i.e. it is represented by a nonsingular matrix.
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Proof. Note that H1(X,C) = H1(X,R)⌦R C, and the pairings are compatible.
So we may as well work with real coe�cients, which is a bit simpler. By linear
algebra, the nondegeneracy amounts to the following: if ! 6= 0, then we need to
find !0 such that

h!,!0i 6= 0

Given a holomorphic local coordinate z, let x and y be the real and imaginary
parts. Define the Hodge star operator by

⇤dx = dy, ⇤dy = �dx

This can viewed as multiplication by i in the real cotangent planes, so it is
independent of coordinates. One can see that for a real 1-form

! = fdx+ gdy

! ^ ⇤! = (f2 + g2)dx ^ dy

Therefore if ! 6= 0, then

h!, ⇤!i =
Z

X

! ^ ⇤! > 0

This gives part of what were after.

Corollary 11.3.5. dimH1(X,C) is even.

To finish what we set out to prove, we need

Theorem 11.3.6. g  c

First, we prove an analogue of the fact that regular functions on a projective
variety are constant.

Lemma 11.3.7. A holomorphic function on X is constant.

Proof. Assume that h is nonconstant. By compactness of X, |h| will attain a
maximum somewhere, say at p 2 X. Since h is nonconstant and holomorphic,
h � h(p) will have isolated zeros. Therefore h is nonconstant in any disk D
containing centered at p. On the other hand, the maximum modulus principle,
implies that h is constant because |h| has a maximum at an interior point. So
we have a contradiction.

Proof of theorem. Let V = ⌦X(X). Any element ! 2 V is holomorphic, i.e. in
a holomorphic local coordinate ! = f(z)dz, where f(z) is holomorphic. Setting
u = Re(f) and v = Im(f), we have

! = (u+ iv)dx+ (�v + iu)dy
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Then the Cauchy-Riemann equations

ux = vy, uy = �vx

imply that ! is closed. This gives a map

V ! H1(X,C)

We claim that the above map is injective. Suppose that ! 2 V is in the
kernel. Then ! = dh for some C1 function h on X. If we set s = Re(h), t =
Im(h), then

sx = u = ty, tx = v = �sy

Therefore h is holomorphic. Since h is globally defined, it is constant by previous
lemma. Therefore we ! = dh = 0. So the claim is proved. This already implies
g  2c. To get the stronger inequality, it is enough to show that V is isotropic.
Suppose that !, ⌘ 2 V then locally ! = fdz, ⌘ = gdz. Therefore

! ^ ⌘ = fgdz ^ dz = 0

so that

h!, ⌘i =
Z

X

! ^ ⌘ = 0

Therefore V is isotropic.

11.4 Exercises

Exercise 11.4.1.

1. Using the Poincaré lemma and Mayer-Vietoris, show that H1(S2,C) = 0,
where S2 is the unit sphere in R3 or you take it to be P1

C.

2. Let T 2 = R2/Z2 be the standard torus. Show that H1(T,C) = C2 with
generators corresponding to dx, dy, where x, y be the standard coordinates
on the plane.

3. Let E = C/Z + Zi viewed as a Riemann surface. Show the space of
holomorphic 1-forms is one dimensional and spanned by dz.
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