
Chapter 5

Introduction to Schemes

5.1 Spec of a ring

So far we have been focusing on quasiprojective varieties over an algebraically
closed field. But this is often not good enough for several reasons:

• People who work in commutative algebra or number theory use a lot of
algebraic geometry, but they usually don’t work over algebraically closed
fields. Even in classical algebraic geometry, it is natural to work over
function fields.

• In order for something to be quasiprojective, it has to be given as a subset
of projective space, but this is often complicated and besides the point.
This came up in the construction of products for example.

• Even in classical geometry, the language of quasiprojective varieties is not
completely adequate. For example consider the family of conics ty�x2 =
0, as t ! 0 it more natural to view this degenerating to a “double line”.

The solution to all of these problems, due to Grothendieck, is to consider
something more general called a scheme.1 The definition is pretty involved. So
let’s start by describing the basic building blocks called a�ne schemes.

Recall that given an a�ne variety X over algebraically closed field, we can
associate the a�ne domain R = O(X). We can recover X from R. From the
Nullstellensatz

a 7! ma = {f 2 R | f(a) = 0}
gives a bijection between the set X and the space of maximal ideals MaxR. A
regular function F : X ! Y to another a�ne variety determines a homomor-

1Of course in ordinary English it has an entirely di↵erent meaning, but I believe the
Greek root means “figure” or “form”. The original source is Grothendieck and Dieudonné’s
EGA=Éléments de Géometrie Algébrique, which like Euclid’s Elements is actually several
books. Nowadays most people use Hartshorne’s Algebraic Geometry as an introduction to
this topic.
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phism F ⇤ : S ! R, where S = O(Y ). The following is pretty straightforward
with the help of the Nullstellensatz

Lemma 5.1.1. Given a maximal ideal ma 2 MaxR, f�1ma is a maximal ideal
of S which is in fact mf(a).

Grothendieck’s idea was that instead of restricting to some special class of
rings, start with an arbitrary commutative ring R and build a corresponding
space. However, we have to make some adjustments. In this generality, maximal
ideals don’t work so well. If F : S ! R is a homomorphism of commutative
rings, then it is not usually true that F�1 takes maximal ideals to maximal
ideals. What is true and easy is to see is that F�1 takes maximal ideals to
prime ideals, and more generally prime ideals to prime ideals. With that in
mind, we define the (prime) spectrum SpecR to be the set of prime ideals.
Then, we observe:

Lemma 5.1.2. Spec is a contravariant functor from commutative rings to sets.

Next we introduce a topology, also called the Zariski topology. Given an
ideal I ⇢ R, let us define Vnew(I) as

Vnew(I) = {p 2 SpecR | I ✓ p}
Also for f 2 R, define

Dnew(f) = {p | f /2 p}
At some point, we will drop the subscript “new”.

Lemma 5.1.3. SpecR carries a unique topology, again called the Zariski topol-
ogy, whose closed sets are the Vnew(I). The Dnew(f)’s give a basis for the open
sets.

A proof can be found in many places, such as Hartshorne. Let see what this
looks like in the simple example of R = k[x], where k is an algebraically closed
field. Using the fact that R is a PID, we see easily that

SpecR = MaxR [ {(0)}
The first set is in bijection with A1

k, but get a new point ⌘ = (0), called the
generic point. We can distinguish these di↵erent points topologically.

Lemma 5.1.4. Let R be a commutative ring. p 2 SpecR is maximal if and only
if {p} = {p}. If R is an integral domain, then {⌘} = SpecR, where ⌘ = (0).

Proof. This will be an exercise.

In general, if R = O(X), where X is a�ne, SpecR will contain many new
points corresponding to irreducible subsets of X. However, we do get an inclu-
sion X ,! SpecR sending a 7! ma 2 MaxR. Even though SpecR is bigger than
X, the partially ordered set of opens Open(X) and Open(SpecR) are isomorphic
by the following:
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Lemma 5.1.5. The injection X ,! SpecR is continuous. Furthermore, U 7!
U\X is an order preserving bijection between the sets Open(X) and Open(SpecR).

Proof. From the definitions, we can see that D(f) = Dnew(f) \ X. So opens,
which are unions of D(f)’s on SpecR restrict to opens in X. Given V =
S

i D(fi), U =
S

i Dnew(fi) gives an open such that V = U \ X. Alternately,
p 2 U if and only if it corresponds to an irreducible subset of X meeting V .
This shows U is uniquely determined from V .

5.2 A�ne schemes

The topological space SpecR is fairly weak invariant. It cannot distinguish one
field from another. What we are missing is the analogue of regular function.
What should this be? The answer is that an element of R should play the role
of a function on SpecR. We also have to say what a function is on a subset.
Before we can do this, we need to understand sheaves in a more serious way.

A presheaf of sets, groups rings... on a topological space X consists of an
assignment of F(U) of a set, group... to each open U ⇢ X and a map or
homorphism ⇢UV : F(U) ! F(V ) (called restriction) for each pair V ✓ U , such
that

1. ⇢UU = id

2. If W ⇢ V ⇢ U , then ⇢UW = ⇢VW � ⇢UV .

In practice, we write fV instead of ⇢UV (f). Elements of F(U) are called
sections, and global sections when U = X. Another way to say what a presheaf is
is to regard Open(X) as a category, where objects are open sets and morphisms
are inclusions U ✓ V . Then a presheaf is the same things as contravariant
functor from Open(X) to Sets, or whatever. There are many examples which
have nothing to do with algebraic geometry.

A presheaf F on X is called a sheaf, if for any open set U and open cover
U =

S

Ui. Given a collection fi 2 F(Ui) such that fi|Ui\Uj = fj |Ui\Uj , there
exists a unique f 2 F(U) with f |Ui = fi. In general, a presheaf of functions
is a sheaf if the definining conditions are local. E.g. the presheaf of continuous
functions on Rn, C1 functions on Rn, holomorphic functions on C are sheaves.
The presheaf of bounded functions on Rn is not (exercise).

Theorem 5.2.1. There exists a unique sheaf of rings OX on X = SpecR such
that

OX(Dnew(f)) = R



1

f

�

with restrictions of sections under Dnew(gf) ⇢ Dnew(f) given by natural maps

R



1

f

�

! R



1

gf

�
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A detailed construction can found in Hartshorne. However, in fact every-
thing can be read o↵ from the above description. Suppose U = Dnew(f) [
Dnew(g) and we are wondering what OX(U) looks like. The sheaf property tells
us that it would be given by a pair (r1, r2) 2 R[1/f ]⇥R[1/g] with ri having the
same image in R[1/fg].

Definition 5.2.2. A ringed space is a pair consisting of a topological space and
a sheaf of commutative rings on it. The a�ne scheme associated to R is the
ringed space (SpecR,OSpecR). This is usually also denoted by SpecR.

Lemma 5.2.3. The scheme SpecR determines R

Proof. R = OSpecR(SpecR).

Let X be an a�ne variety over an algebraically closed field with R = O(X).
We saw earlier that we have an inclusion X ⇢ SpecR, such that open sets
correspond. Now let’s compare functions.

Lemma 5.2.4. A section of OSpecR(U) restricts to a regular function on X\U .
Any regular on X \ U extends to a section of OSpecR(U).

Proof. By the sheaf property, we can work with basic opens. Then this comes
down to the isomorphisms

OSpecR(Dnew(f)) = R[1/f ] = OX(D(f))

The import of lemmas 5.1.5 and 5.2.4 is that there is no essential di↵er-
ence between X and SpecR. From here on, we will just write V,D instead of
Vnew, Dnew. It will be clear from context, which sense we mean.

Let us redefine a�ne space as An
R = SpecR[x1, . . . , xn]. Given an ideal

I ⇢ R[x1, . . . , xn], we can identify the space underlying SpecR[x1, . . . , xn]/I
with closed subset V (I) ✓ An

R by the exercises. We call this a closed subscheme
of a�ne space. For example the double line mentioned earlier can now be
rigorously defined as the closed subscheme Spec k[x, y]/(x2) of A2

k. As sets
V ((x2)) = V (x) but the schemes are di↵erent.

5.3 Exercises

Exercise 5.3.1.

1. Prove lemma 5.1.1

2. Given an ideal I ⇢ R, show that the map SpecR/I ! SpecR is injective,
and the image is precisely V (I).

3. The nilradical
p
0 of a ring R is the ideal of nilpotent elements. Show that

SpecR/I = SpecR if and only if I ✓ p
0.
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4. Show that SpecR is noetherian if R is noetherian. Is the converse true?
(Hint: you can use the previous problem.)

5. Prove lemma 5.1.4

6. Show that the presheaf of bounded functions on R is not a sheaf.
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