
Chapter 7

Schemes III

7.1 Functor of points

Here is another way to understand what a scheme is1. Given a scheme X, and
a commutative ring R, the set of R-valued points

X(R) = HomSchemes(SpecR,X)

This is in fact a functor from the category of commutative rings to sets. To get
a sense of what this does, let X = Spec k[x1, . . . , xn]/(f1, . . . , fm) where k is a
field. Suppose L is also a field. Then we know that

X(L) = HomRings(k[x1, . . . xn]/(fi), L)

To give such a homomorphism is to give an inclusion k ✓ L and an assigment
xi 7! ai 2 L such that fi(a1, a2, . . .) = 0. Therefore

Lemma 7.1.1. X(L) = V (f1, f2, . . .) ✓ An
L

Thus points are points in more or less the original sense. However, we have
extended it allow us to work in bigger fields. Also we don’t have to restrict
to fields. Consider the the double line X = Spec k[x, y]/(x2) ⇢ A2

k versus the
ordinary line Y = Spec k[x, y]/(x). For any field L ◆ k, X(L) = Y (L), so we
can’t detect any di↵erence this way. However, letting R = k[✏]/(✏2) gives

(✏, a) 2 X(R)� Y (R), 8a 2 k

So we can “see” the di↵erence using these more general rings.
If X is nona�ne, we can choose an a�ne open cover {Ui}. Then

X(L) =
[

Ui(L)

1Unfortunately, Hartshorne omits this important topic, but there are plenty of other
sources: EGA I, Demazure-Gabriel’s “Intro to AG”, Eisenbud-Harris’ “Geometry of Schemes”,
Mumford’s “Curves on an algebraic surface”...
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Let us see how this works for X = Pn
k = Proj k[x0, . . . xn]. We saw that there is

an open cover Ui
⇠= Spec k[x0/xi, . . .]. Thus a point of Pn

k (L) is a point of one
of these a�ne spaces Ui(L). In the general, a given point would lie in several
Ui’s. We can see that p 2 Ui(L) and q 2 Uj(L) represent the same point if they
are projectively the same in the sense that [p] = [q]. Therefore

Lemma 7.1.2. Pn
k (L) = Pn

L, where the right hand side has the original meaning.

Theorem 7.1.3. A scheme is determined by its functor of points.

We won’t prove it, but we indicate the main steps. Given a scheme X, define
the generalized functor of points by

S 7! HomSchemes(S,X)

The proof reduces to checking two statements

1. The generalized functor of points is determined by the functor of points.

2. A scheme is determined by its generalized functor of points.

1. comes down to the fact the generalized functor applied to SpecR is the
original X(R), a general scheme S is covered by a�ne schemes, and X(�) is
determined what happens on a covering. To make the last statement precise,
we observe that

Lemma 7.1.4. X(�) is a sheaf.

Sketch. Given F = (f, f#) :2 X(S) and an open cover {Ui}. We get restrictions
F |Ui : Ui ! X given by f |Ui and OX(U) ! OS(f�1U \ Ui). It is easy to see
that F is determined uniquely by the F |Ui . In the other direction, given a
collection of morphisms Ui ! X which agree on intersections, we have to build
an F : S ! X such that Fi = F |Ui . For f this is easy, because continuous
functions can be patched. To define f# : OX(U) ! OS(f�1U) send g to the
unique section � such that

�|f�1U\Ui
= f#

i (g)

2. follows from a basic fact from category theory

Lemma 7.1.5 (Yoneda’s lemma). If X and Y are objects of a category C such
that there is a natural isomorphism HomC(�, X) ⇠= HomC(�, Y ), then X ⇠= Y .

Sketch. One has bijections HomC(X,X) ⇠= HomC(X,Y ) and HomC(Y, Y ) ⇠=
HomC(Y,X), under which the identities map to f 2 HomC(X,Y ) and g 2
HomC(Y,X). Naturality can used to show that f and g are inverses. Therefore
X ⇠= Y .
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7.2 Infinitessimals

Let k be a field. Suppose

R = k[x1, . . . , xn]/(f1, . . . , fm)

and X = SpecR. Given p 2 X(k), imitating what we do in calculus, define the
tangent space

TpX = {c 2 kn |
X @f

@xi
|p(ci) = 0} (7.1)

Observe that this definition depends on the equations fi, and not just X as
scheme. We want to give an alternative description which is more intrinsic.
The key is the ring D = k[✏]/(✏2), which came up earlier. For some reason,
it is called the ring of dual numbers. We observe a couple of features of this
ring. Firstly, D has exactly one prime ideal m = (✏). Given a polynomial
f(x1, x2, . . .) 2 k[x1, . . . xn], and a = (a1, . . .) 2 kn, we have a Taylor expansion

f(x1, . . .) = f(a) +
X @f

@xi
|a(xi � ai) + . . .

where the ... refers to sum of quadratic and higher order homogeneous polyno-
mials in xi � ai. If we substitute a = b+ c✏ 2 kn then all the higher terms will
cancel. Therefore

Lemma 7.2.1.

f(a) = f(b) +
X @f

@xi
|a(ci)✏

A point a 2 X(D) is given by assigning ai = bi+ci✏ 2 D such that f(a) = 0.
From the previous lemma, we see that this equivalent to b 2 X(k) and c 2 TbX.
Therefore

Lemma 7.2.2. There is a bijection between X(D) and pairs b 2 X(k) and
c 2 TbX.

Corollary 7.2.3. There is a bijection TbX = ⇡�1(b), where ⇡ : X(D)! X(k)
is the natural map.

The last result shows that the set TbX doesn’t depend on the equations. But
we still don’t see the vector space structure. This can be obtained as follows. Let
b 2 X(k), and let m = mb be the maximal ideal of regular function vanishing
at b. Set S = Rm. This is a local ring with maximal ideal we also call m, and
residue field k.

Lemma 7.2.4. TbX ⇠= Homk(m/m2, k)

Sketch. We can identify TbX with the set of homomorphisms from R! D which
send m to the maximal ideal of D. Such a homomorphism extend uniquely to
local homomorphisms f : S ! D, and conversely. Since k is also a subfield of
S, it splits into a sum S = k � m. f is determined by its restriction f |m 2
Homk(m/m2, k). This defines a map TbX ! Homk(m/m2, k), which can be
seen to be an isomorphism.
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It is not hard to see that the vector space structure on the right agrees with
the vector space structure on TbX from (7.1). Given a local ring S with maximal
ideal m and residue field k, we define its (Zariski) tangent space by

TS = Homk(m/m2, k)

Observe that m/m2 is always k-vector space, so this formula makes sense in
general. Suppose that S is noetherian, then this space is finite dimensional.
From commutative algebra, we get an inequality

Theorem 7.2.5. If S is noetherian

dimTS � dimS,

where the dimension on the left is the vector space dimension, and on the right
it is the Krull dimension.

Rather than taking this on faith, we should understand why this holds, at
least in the case when S is the local ring of a subscheme X ⇢ An

k as a above.
From the inclusion, we get dimX  dimAn = n. If it so happens that TbX =
kn, then we are done. But this usually doesn’t happen. So instead try to replace
An by AdimTbX in such a way that it still contains X or enough of it, to compute
the dimension. To make sense of this, we switch to the algebraic viewpoint. By
Nakayama’s lemma, d = dimTbX can be identified with the minimum number
of generators for the ideal m. Choose generators ȳ1, . . . , ȳd 2 m, and define the
k-algebra map k[y1, . . . , yd] ! S by sending yi 7! ȳi. This factor through the
localization

k[y1, . . . , yd](y1,...,yd) ! S

If the map was surjective, we would again be done. Unfortunately, it isn’t
usually surjective, but what is true and not hard to see is that the map surjects
onto S/mN for any N . This implies that it gives surjection of completions2

k[[y1, . . . , yd]]! Ŝ := lim �
N

S/mN

So now we have
dimS = dim Ŝ  d

7.3 Regularity

Recall that noetherian local ring S is called regular if we have equality

dimTS = dimS
2See Atiyah-Macdonald for the basics about completions. One can view the completion as

a way of making things “even more local” than ordinary localization. The intuition is that
going to power series is like working with analytic neigbourhoods, which are finer than Zariski
neighbourhoods.
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A point p 2 X variety (scheme) is called nonsingular (regular) if the local
ring OX,p is regular. X is called nonsingular/regular if all its points have this
property. Note that for varieties, the words are interchangeable. For schemes,
nonsingularity is somewhat ambiguous because it might refer to regularity or a
stronger condition called smoothness.

Theorem 7.3.1. Let k be a field. If X ⇢ An
k is the closed subscheme defined

by polynomials f1, . . . , fm, a 2 X(k) is nonsingular if and only if

rank

✓

@fi
@xj

(a)

◆

= n� dimX

Proof. Let J be the Jacobian matrix above. Then TaX = ker J(a) by (7.1).
Therefore, the theorem follows from the rank-nullity theorem of linear algebra.

Corollary 7.3.2. The set of nonsingular points is open.

Proof. This theorem and theorem 7.2.5 imply that a is nonsingular if and if

rank (J(a)) � n� dimX

The complementary condition is closed because it given by vanishing of minors
of J .

Note that this set might be empty. For example, this is the case for the
double line X = Spec k[x, y]/(x2). However, for varieties, it’s a di↵erent story.

Theorem 7.3.3. Let k be an algebraically closed field. Let X ⇢ An
k be the

closed subvariety, or equivalently Spec k[x1, . . . xn]/I, where I is a prime ideal.
Then the set of nonsingular points is nonempty and open.

Corollary 7.3.4. The same conclusion holds for quasiprojective varieties.

We already know that this set is open, so we just have to prove that it is
nonempty. We start with a special case.

Lemma 7.3.5. The theorem holds for the hypersurface X = V (f), where f is
irreducible and nonconstant.

Proof. We prove this by contradiction. So assume all points are singular. Then
fxi(a) = @f/@xi(a) = 0 for all a 2 X and i. Therefore fxi 2 (f) by the Null-
stellensatz. Since deg fxi < deg f , we must have fxi = 0 as a polynomial, and
this holds for each i. There two ways this can happen: Either the characteristic
is 0, in which case f must be constant, or the characteristic is p > 0, and f is a
pth power. In either case, this contradicts what we assumed about f .

To finish the proof need the following.
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Lemma 7.3.6. If X is an a�ne variety, then it has a nonempty open set which
is isomorphic to a nonempty open subset of some irreducible hypersurface.

Proof. Let K be the function field of X. Recall that this is the field of fractions
of O(X). Then K is finitely generated extension of k. By field theory, we can
find a separating transcendence basis x1, . . . xn 2 K. This means that in the
sequence

k ⇢ k(x1, . . . , xn) ⇢ K

the first extension is purely transcendental, and the second is finite separable.
The primitive element theorem allows us to express

K = k(x1, . . . , xn, y)

for some element y. This is algebraic, so satisfies a nontrivial equation

f(x1, . . . , xn, y) =
X

ai(x1, . . . , xn)y
i = 0

After clearing demoninators, we can assume that f is polynomial. Then Y =
V (f) ⇢ An+1 defines a hypersurface with the same function field as X, which is
to say that X and Y are birational. The final step is observe that two birational
varieties have open sets which are isomorphic. This is well known and standard.
See for example p 26 of Hartshorne.

7.4 Exercises

Exercise 7.4.1.

1. One can show that the category of schemes has products. Prove that
X ⇥ Y (R) = X(R) ⇥ Y (R). (This pretty formal. You won’t need the
construction of X ⇥ Y .)

A scheme G is called a group scheme (over Z) if G(R) is a group for each R,
and each ring homomorphism R! S induces a group homomorphism G(R)!
G(S). A stronger form of Yoneda’s lemma than we stated shows that this
equivalent to having morphisms m : G⇥G! G, i : G! G and e : SpecZ! G
which makes G into group object in the category of schemes. This is similar to
the way we defined algebraic groups.

Exercise 7.4.2.

2. Let Ga = SpecZ[T ] (also called A1
Z), Gm = SpecZ[T, T�1], and µn =

SpecZ[T ]/(Tn � 1). Show that these are group schemes.

3. Show that An
Z is regular. Conclude the same for Ga and Gm.

4. Show that µn is not regular. (Look at primes dividing n.)
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5. Prove that an algebraic group G is regular. (Hint: since G is a variety,
it contains a maximal nonempty open set U . Use the group structure to
show that G = U .)
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