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Chapter 1

Elliptic curves in a nutshell

1.1 Elliptic curves: elementary approach

Curves in the projective plane P2
C of degrees one and two are easy to understand.

So the first interesting case is three. For historical reasons, these are called
elliptic curves. More precisely, an elliptic curve is a nonsingular cubic in P2. We
can ask how many “degrees of freedom” do we have to choose such a curve. First
of all, a homogeneous cubic polynomial in x, y, z has 10 coefficients. However,
any nonzero scalar multiple of a given polynomial determines the same curve.
So the count should be reduced to 10−1. Furthermore, we only care up to linear
change of variables. More formally, we want to divide out by PGL3, leaving
only 1 = 10 − 1 − 8 parameter for an elliptic curve. Of course, this discussion
was not rigorous, but it can be made so.

Theorem 1.1.1. After a linear change of variables, an elliptic curve (over C)
can be put into Weierstrass form, given by homogenizing

y2 = 4x3 − ax− b (1.1)

where a, b are constants such that

∆ = a3 − 27b2 6= 0

Proof. The reduction to
y2 = x3 +Ax+B

can be found in [Si, chap III, §1]. From here, a further linear change of the form
(x, y) 7→ (cx, y), will put into Weierstrass form.

The significance of the shape of the right side of (1.1) will be clear shortly.
Note that ∆ is the discriminant of the right side 4x3− ax− b. So the condition
∆ 6= 0 is exactly the condition for this polynomial to have distinct roots. This
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is equivalent to the nonsingularity of the projective curve defined by (1.1). The
Weierstrass form is not unique. If a′ = c4a and b′ = c6b, then

y2 = 4x3 − a′x− b′

gives a curve isomorphic to (1.1) under the transformation (x, y) 7→ (c2x, c3x).
This is in fact the only ambiguity. We can see that the quantity

j = 1728
a3

∆

is invariant under such a transformation. (The normalization factor 1728 is
there by tradition, although unimportant for our purposes.) In fact, we have

Theorem 1.1.2. Two elliptic curves over C in Weierstrass form are isomorphic
if and only if their j-invariants coincide.

This makes precise what we said above.

1.2 Elliptic curves: analytic theory

We now give an analytic description. We recall that a lattice in C is a subgroup
spanned by a real basis.

Theorem 1.2.1. Any elliptic curve is isomorphic (as a Riemann surface) to
the quotient of C by a lattice. Conversely, any such quotient is an elliptic curve.

We will explain the idea of the proof of the converse statement in the last
theorem, referring to [Si] for details. Let say that two tori C/L and C/L′ are
isomorphic if there exists a nonzero c ∈ C∗ such that cL = L′.

Lemma 1.2.2. Any elliptic curve is isomorphic to one of the form Eτ =
C/Lτ , Lτ = Z + Zτ , with Im τ > 0.

This is elementary, but we give the proof, since we will need the notation
anyway.

Proof. Let
B = {(u, v) ∈ C2 | u, v R-linearly independent}

be the set of real bases for C. It is easy to see that this has two connected
components

B+ = {(u, v) | Im (u/v) > 0}, B− = {(u, v) | Im (u/v) < 0}

which correspond to positively and negatively oriented bases. Clearly any lattice
is given by Zu + Zv, where (u, v) ∈ B. By switching u, v, if necessary, we can
assume (u, v) ∈ B+. Then Zu+Zv = v(Z+Zu/v) gives the desired isomorphism.
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We define the Weierstrass ℘-function by

℘(z, τ) = ℘(z) =
1

z2
+

∑
λ∈L, λ 6=0

(
1

(z − λ)2
− 1

λ2

)
(1.2)

It is not hard to show that the terms are dominated by Const|z|/|λ|3, and
consequently that

Proposition 1.2.3. The series converges uniformly on compact subsets to a
holomorphic function on C− L.

Clearly, ℘ has poles at L.

Theorem 1.2.4. The Weierstrass function is periodic with respect to L in the
sense that

℘(z + λ) = ℘(z)

for λ ∈ L

Proof. By the previous proposition, we can differentiate (1.2) term by term to
obtain

℘′(z) = −2
∑
λ∈L

(
1

(z − λ)3

)
So clearly ℘′ is doubly periodic. Therefore

℘(z + λ) = ℘(z) + c(λ)

for appropriate constants c(λ). In particular, setting z = −λ/2 shows that

℘(λ/2) = ℘(−λ/2) + c(λ)

However, we can see directly from (1.2), that ℘(−z) = ℘(z). Therefore c(λ) = 0.

An elliptic function (relative to L) is a meromorphic function on C which
is periodic with respect to L. The theorem shows that ℘ is elliptic. An ellip-
tic function can be viewed a meromorphic function on C/L. From Liouville’s
theorem, we obtain

Proposition 1.2.5. An entire elliptic function is constant.

Theorem 1.2.6. The Laurent expansion of ℘ at 0 is

℘(z) =
1

z2
+

∞∑
k=1

(2k + 1)G2k+2z
2k

where the coefficients, called Eisenstein series, are

G2k =
∑

λ∈L−{0}

1

λ2k
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Proof. This results from substituting

(z − λ)−2 − λ−2 = λ−2[(1− z/λ)−2 − 1]

=

∞∑
1

(k + 1)zk

λk+2

into (1.2).

Theorem 1.2.7.
(℘′)2 = 4℘3 − g2℘

2 − g3

where
g2 = 60G4, g3 = 140G6

Sketch. Let
f(z) = (℘′)2 − 4℘3 − g2℘

2 − g3

This is clearly elliptic, and the only possible poles are at points of L. However,
using the previous theorem we can calculate enough terms of the Laurent series
of f to conclude that f has no poles at 0 and f(0) = 0. It follows that f has no
singularities at all, and is therefore constant. So it must be identically 0.

We can now define a map C/L→ P2 given by

z 7→

{
[℘(z), ℘′(z), 1] if z /∈ L
[0, 1, 0] otherwise

Proposition 1.2.8. This is an embedding.

Proof. See [Si, pp 158-159].

Putting the above statements together, we see that C/L is a cubic in P2 as
claimed earlier.

One consequence of this representation of an elliptic curve as a torus, is that
we get a natural group law on it.

1.3 Analytic theory continued: theta functions

With an eye towards higher dimensions, we want to give a different method of
realizing the elliptic curve E = C/Z + Zτ as a projective curve. We need to
construct functions fi : E → C such that p 7→ [f0(p), . . . , fn(p)] ∈ Pn is well
defined and gives an embedding. If we regard fi as functions from C→ C, these
would be quasiperiodic, in the sense that

fi(p+ λ) = (some factor)fi(p), ∀λ ∈ Z + Zτ
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where the factor in front is the same for all i and nonzero. The basic example
is Jacobi’s θ-function. This is given by the Fourier series

θ(z, τ) =
∑
n∈Z

exp(πin2τ + 2πinz) =
∑
n∈Z

exp(πin2τ) exp(2πinz)

Since τ is fixed, we just view it as function of z for now. Writing τ = x+iy, with
y > 0, shows that on a compact subset of the z-plane the terms are bounded by
O(e−n

2y). So uniform convergence on compact sets is guaranteed, and we can
conclude that θ holomorphic. This is clearly periodic

θ(z + 1) = θ(z) (1.3)

In addition it satifies the functional equation

θ(z + τ) =
∑

exp(πin2τ + 2πin(z + τ))

=
∑

exp(πi(n+ 1)2τ + 2πi(n+ 1)z − 2πiz − πiτ)

= exp(−πiτ − 2πiz)θ(z)

(1.4)

Conversely, if f(z) is a holomorphic function satisfying these equations, then
(1.3) yields a Fourier exansion

f(z) =
∑
n

an exp(2πinz)

and (1.4) produces recurrence conditions on the coefficients. This can be used
to show that f(z) = a0θ(z). We get more solutions by relaxing these conditions.
Let N > 0 be an integer, and consider the space VN of holomorphic functions
satisfying

f(z +N) = f(z)

f(z +Nτ) = exp(−πiN2τ − 2πiNz)f(z)
(1.5)

By the first equation, any function in VN can be expanded in a Fourier series
(in powers of exp(2πi/N)), and the second equation yields recurrences which
shows that the coefficients are determined by N2 of them. In other words:

Lemma 1.3.1. dimVN = N2.

A proof of this lemma can be found on pp 8-10 of [MT]. The discussion
there gives quite a bit more information that we recall. The conditions (1.5)
can be expressed as invariance under the operators

Sa(f)(z) = f(z + a),

Tb(f)(z) = exp(πib2τ + 2πibz)f(z + bτ)

for a, b ∈ NZ. For a, b ∈ R, we have the following identities

SaSb = Sa+b, TaTb = Ta+b
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SaTb = exp(2πiab)TbSa

So they generate a nonabelian group H, called a Heisenberg group, which fits
into an exact sequence

1→ U(1)→ H → R2 → 0

where the last map sends SaTb 7→ (a, b) and U(1) ⊂ C∗ is the unit circle. A key
fact is:

Lemma 1.3.2. VN is stable under the operators S1/N and T1/N , and therefore
under the subgroup H ′N of H generated by these operators. This subgroup fits
into a sequence

1→ µN → H ′N → (
1

N
Z)2 → 0

The action of H ′N on VN is trivial on the preimage of (NZ)2. Therefore the
action factors through a finite quotient HN of H ′N which, as an abstract group,
fits into an exact sequence

1→ µN → HN → (Z/N2Z)2 → 0

Lemma 1.3.3. Given nonzero f ∈ VN , it has exactly N2 zeros, counted with
multiplicities, in the parallelogram with vertices 0, N,Nτ,N+τ (where we trans-
late if necessary so no zeros lie on the boundary).

Proof. Complex analysis tells us that the number of zeros is given by the integral

1

2πi

∫
C1+C2+C3+C4

f ′(z)dz

f(z)

over the boundary of the parallelogram.

4

C
1

C
2

C
3

C

Using f(z +N) = f(z), we obtain∫
C2+C4

f ′(z)dz

f(z)
= 0

and from f(z +Nτ) = Const. exp(−2πiNz)f(z), we obtain∫
C1+C3

f ′(z)dz

f(z)
= 2πiN2
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A function f ∈ VN is quasi-periodic with respect to the lattice NL. If we
transform it to F (z) = f(Nz), then it become quasi-periodic with respect to L.

Once we choose a basis fi of VN , the map φ : E → PN2−1 given by z 7→ [Fi(z)]
is well defined. Recall that we found a finite group HN which acts on VN , and
therefore on PN2−1. This group also acts on E where the image (a, b) under the
homomorphism HN → (Z/N2)2 sends z 7→ z + a/N2 + bτ/N2. One checks by
a calculation [MT, p 13] that

Lemma 1.3.4. φ is equivariant for these actions

Theorem 1.3.5. φ : E → PN2−1 is an embedding.

Proof. Suppose that φ is not one to one. Then F (z1) = λF (z′1) for some z1 6= z′1
in C/L, some λ ∈ C∗, and all f ∈ VN . By translation byHN , we can find another
such pair z2, z

′
2 with this property, such that z1, z

′
1, z2, z

′
2 are distinct. Choose

N2−3 additional points z3, . . . zN2−1 in C/L distinct from the previous choices.

We define a map VN → CN2−1 by f 7→ (F (zi)). Since dimVN = N2, we can
find a nonzero f ∈ VN so that

F (z1) = F (z2) = F (z3) = . . . F (zN2−1) = 0

Notice that we are forced to also have F (z′1) = F (z′2) = 0 which means that f
has at least N2 + 1 zeros which contradicts the lemma.

A similar argument shows that the derivative dφ is nowhere zero. Otherwise
we would have a point z1 such that F ′ has a zero at z1 for every f ∈ VN .
Arguing as above, we would find a nonzero f ∈ VN and points z1, . . . zN2−1,
such that F has zeros at the zi and double zeros at z1, z2. This again yields a
contradiction.

The embeddings produced this way are different from the previous method.
The smallest case is when N = 2. Then we get an embedding E into P3. One
can show that it an intersection of two quadrics. In general, we can always
guarantee that the image is algebraic by:

Theorem 1.3.6 (Chow). If X ⊂ Pn is a complex submanifold, then it auto-
matically a nonsingular projective algebraic variety.

1.4 Elliptic curves over arbitrary fields

Finally let us redo parts of the theory assuming Hartshorne level algebraic ge-
ometry.1 We now work over an arbitrary field k, which is not necessarily alge-
braically closed. An elliptic curve over k, is a smooth projective curve E over k,
of genus one, with a fixed k-rational point O. We will deduce the earlier descrip-
tion as a consequence. First, we should recall that the fundamental invariant of
a smooth projective curve is its genus g. Suppose that k is algebraically closed.

1And if you haven’t read it, don’t worry about it too much. All of this material can be
understood with only basic AG, as in [Si].
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If X ⊂ PN is a smooth projective curve, let X ′ be its image under a general
linear projection PN 99K P2. Then X ′ ⊂ P2 has only nodes as singularities. The
genus is given by

g =
(d− 1)(d− 2)

2
− δ

where d is the degree of X ′ and δ is the number of nodes. So g = 1 when
X = X ′ is smooth of degree 3. Although this gives a method for calculating g,
it does not make a good definition, as it not obviously independent of the choice
of embedding. A more intrinsic definition is via sheaf cohomology

g = dimH1(X,OX) = dimH0(X,Ω1
X)

where the last equality is a special case of Serre duality. This shows that g ≥
0, which wasn’t obvious from the last formula. When k = C, g can also be
identified with one half the first Betti number. This can be seen from the
Hodge decomposition.

Among other things, the genus enters into the statement of the Riemann-
Roch theorem, which we will recall. Let us suppose that k is algebraically closed
for simplicity, then a divisor D is a finite formal sum D =

∑
nipi, where pi are

points of X. Define the degree

degD =
∑

ni

The formalism works over nonalgebraically closed fields, but now pi are closed
points of X viewed as a scheme, and degD =

∑
ni[k(pi) : k], where k(pi) are

the residue fields. If f is a nonzero rational function, the associated principal
divisor

div f =
∑

ordp(f)p

where ordp(f) is the discrete valuation attached to p. If ω is a nonzero rational
differential form, the canonical divisor

divω =
∑

ordp(ω)

In spite of the formal similarity canonical divisors are usually not principal. In
fact the degrees

deg(div f) = 0, deg(divω) = 2g − 2

are usually different. However, when g = 1, we do have equality. In fact, more
is true.

Lemma 1.4.1. When g = 1, Ω1
X
∼= OX and any canonical divisor is principal.

Proof. Since H0(Ω1
X) 6= 0, we have a nonzero regular 1-form ω. Note that

ω has no poles, and since deg divω = 0, it has no zeros either. By identifying
H0(X,Ω1

X) ∼= Hom(OX ,Ω1
X), we can view ω as a nonzero morphismOX → Ω1

X .
The map is injective, because the kernel consists of functions f such that fω = 0.
Since for every p ∈ X, ω(p) 6= 0, we can express dx as multiple of ω, where x is
local uniformizer. This implies that ω is surjective as well. Therefore Ω1

X
∼= OX ,

and the second statement is an immediate consequence.
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We define a sheafOX(D), sometimes denoted by L(D), whose global sections
are

H0(X,OX(D)) ∼= {f a rational function | ordpif + ni ≥ 0}

This means that div (f) + D is effective in the sense that its coefficients are
nonnegative. There are a few cases where this can be computed directly from
the definition. If D = 0, then H0(OX(D)) = H0(OX) consists of constant
functions (because X is projective). If D is nonzero with positive coefficients,
then H0(OX(−D)), consists of constant functions vanishing somewhere, so that
H0(OX(−D)) = 0. For more general cases, we can use Riemann-Roch.

Theorem 1.4.2 (Riemann-Roch).

h0(OX(D))− h0(OX(K −D)) = degD + 1− g

where K is any canonical divisor and hi = dimHi.

This leads to another useful method for computing the genus.

Corollary 1.4.3. degK = 2g − 2

Proof. Apply Riemann-Roch when D = K.

Let us return to the case of an elliptic curve (E,O). Take D = nO (O not
0), where n is a positive integer. Then

h0(OE(nO))− h0(OE(K − nO)) = 1

Since K = 0, we can write the second term on the left as h0(O(−nO)), but this
is 0. Thus we can conclude that

h0(OE(nO)) = n

It follows that H0(OE(O)) = H0(OE) consists of just the constant functions.
This also implies that there exists a nonconstant f ∈ H0(O(2E)) and a func-
tion g ∈ H0(O(3O)) not in H0(O(2O)). We can also conclude that the seven
functions 1, f, f2, f3, g, g2, gf ∈ H0(O(6O)) are linearly dependent. Using these
facts, it is not difficult to show that the map p 7→ (f(p), g(p)) extends to em-
bedding of E as a cubic in P2

k. More generally:

Theorem 1.4.4. Suppose that D is a divisor of degree 3 or more, and f0, . . . fn ∈
H0(E,OE(D)) is a basis. Then the map φ : E → Pnk given φ(x) = [f0(x), . . . , fn(x)]
is an embedding.

Proof. This follows from [H, cor 3.2, p 308].

Recall that the class group Cl(X) of a smooth projective curve is the quotient
of the group of divisors by the subgroup of principal divisors. Since principal
divisors have degree 0, the degree homomorphism factors through Cl(X). Let
Cl0(X) = ker degCl(X)→ Z.

11



Theorem 1.4.5. Let (E,O) be an elliptic curve. The map α : E → Cl0(E)
defined by α(p) = p−O is a bijection.

Proof. Suppose D is divisor of degree 0. By Riemann-Roch

h0(O(D +O)) = 1

Choose a nonzero function f ∈ H0(O(D +O). div f is necessary of the form p
for some p ∈ X. So that f ∈ H0(O(D +O − p)) This implies that divisor class
of D and p−O are equal. Therefore α is surjective.

Suppose that α(p) = α(q) and that p 6= q . Then p − q is principle. This
implies that there is a function f with simple pole at p and no other poles.
Viewing f as map f : E → P1, we can see that this implies that f is degree 1.
So we are forced to conclude that E ∼= P1 but this is impossible since the genera
are different. So α is injective.

Corollary 1.4.6. E has the structure of abelian group in a natural way.

Without the word “natural”, the result would be quite useless. We can in-
terpret this to mean, that the group operations are connected to the structure
of E as an algebraic variety, in the sense that they are morphisms. We refer to
[Si] or other standard texts for an explanation or why this holds.

Let us return to case when k = C and reinterpret the theory of theta func-
tions in terms of divisors. Given VN as before, f ∈ VN − {0} is not a function
on E = C/Z+Zτ . However, we can attach an effective divisor Df to it by tak-
ing the divisor of zeros of f in a fundamental parallelogram as in lemma 1.3.3.
This lemma shows that degDf = N2. If g ∈ VN is another nonzero function,
g/f is invariant and therefore a meromorphic function on E. We can see that
Dg = Df + div (g/f), so that Dg is linearly equivalent to Df . This tells us that
g/f ∈ H0(E,O(Df )). So the map g 7→ g/f gives an injective homomorphism,
which we can view as an inclusion

VN ⊆ H0(E,O(Df ))

Since both sides have dimension N2, we must have equality. In particular,
theorem 1.3.5 follows from theorem 1.4.4. Finally, we note that there is even
an analogue of the Heisenberg group due to Mumford. We won’t get into that
here, but instead refer to his paper On the equations defining Abelian varieties
I, Inventiones 1966 for details.
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Chapter 2

Modular curves

2.1 The action of SL2(R)
We let GL2(C) act on the Riemann sphere C ∪ {∞} by fractional linear trans-
formations (

a b
c d

)
· τ 7→ aτ + b

cτ + d

Note that we can identify C∪{∞} = P1
C. With respect to this, the above action

of GL2(C) coincides with the usual action on the projective line by [v] 7→ [Av].

Lemma 2.1.1. SL2(R) acts transitively on the upper half plane H = {τ ∈ C |
Im τ > 0} by fractional linear transformations. The stabilizer of i is SO(2).
Therefore, we can identify H = SL2(R)/SO(2).

Proof. If

(
a b
c d

)
∈ SL2(R) and τ ∈ C, then

Im
aτ + b

cτ + d
=

Im τ

|cτ + d|2
(2.1)

This shows that SL2(R) preserves H. We have(
a b
c d

)
· i =

(ca+ db) + i

c2 + d2

It is now an easy exercise to see that given τ ∈ H, we can find a solution to

A · i = τ

with A ∈ SL2(R), and that if τ = i, we must have A ∈ SO(2).

We can view H as the upper hemisphere of the Riemann sphere P1
C. The

action of SL2(R) extends to the boundary ∂H = P1
R = R ∪ {∞}. In order to
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better visualize the action, it useful to note that H has a Riemannian metric,
called the hyperbolic or Poincaré metric, where the geodesics are lines or circles
meeting ∂H at right angles. The action of SL2(R) preserves this metric, so it
takes a geodesic to another geodesic.

2.2 The modular group SL2(Z)
Let Lτ = Z+Zτ with τ ∈ H as before. We can see that elliptic curves Eτ = C/Lτ
and Eτ ′ are isomorphic if and only if Lτ = Lτ ′ .

Lemma 2.2.1.

(a) If (u, v)T , (u′, v′)T ∈ B+, then Zu+ Zv = Zu′ + Zv′ if and only if (u, v)T

and (u′, v′)T lie in the same orbit of SL2(Z).

(b) Lτ = Lτ ′ if and only τ, τ ′ lie in the same orbit under SL2(Z).

Proof. If Zu+Zv = Zu′ +Zv′, there would be change of basis matrix A taking
(u, v)T to (u′, v′)T . A is necessarily integral with positive determinant, and
this already ensures that A ∈ SL2(Z). The converse is easy. (b) follows from
(a).

From this lemma, we can conclude that:

Theorem 2.2.2. The set of isomorphism classes of elliptic curves (over C) is
parameterized by SL2(Z)\H.

At the moment, A1 = SL2(Z)\H is just a set. In order to give more structure,
we need to analyze the action more carefully. First observe that −I acts trivially
on H, so the action factors through Γ = PSL2(Z) = SL2(Z)/{±I}. Consider
the closed region F ⊂ C bounded by the unit circle and the lines Im z = ±1/2
depicted below.

TSF

F

SF

TFT
−1

F

STF

Figure 2.1: Fundamental domain

Let S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
. These act by z 7→ −1/z and z 7→ z + 1

respectively. S is a reflection about i which interchanges the regions |z| ≥ 1 and
|z| ≤ 1. They generate a subgroup G ⊆ Γ.
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Theorem 2.2.3.

(a) The union of translates gF , g ∈ G, covers H.

(b) An interior point of F does not lie in any other translate of F under Γ.

(c) The isotropy group of z ∈ F is trivial unless it is one of the points
{i, eπi/3, e2πi/3} marked in the diagram. The isotropy group is 〈S〉, 〈ST 〉, 〈TS〉
respectively.

Proof. The intuition behind this can be understood from the picture. Repeat-
edly applying S and T±1 to F gives a tiling of H by hyperbolic triangles. Choose
τ ∈ H, we want to find A′ ∈ SL2(Z) and τ ′ ∈ F such that A′ · τ ′ = τ . Using
(2.1), we can see that {ImA · τ | A ∈ SL2(Z)} has a maximum M . Choose an
A which realizes this maximum. Choose an integer n so that τ ′ = TnAτ has
real part in [−1/2, 1/2]. Observe that Im τ ′ = M . If |τ ′| < 1 then −1/τ ′ would
have imaginary bigger than M which is impossible. It follows that τ ′ ∈ F , and
τ lies in its orbit. This proves (a). For the remaining parts, see Serre [Se, pp
79].

The set F is called a fundamental domain for the action of G. We can draw
a number of useful conclusions.

Corollary 2.2.4. G = PSL2(Z), i.e. S and T generate PSL2(Z).

Proof. Let z ∈ F be an interior point, and h ∈ Γ. Then hz = gz for some g ∈ G.
Since z ∈ h−1gF , we must have h−1g = I.

Corollary 2.2.5. The nontrivial elements of finite order in Γ are conjugate to
S or (ST )±1.

Proof. A nontrivial element of finite must lie in the isotropy group of some
point in H. The points in the plane with nontrivial isotropy groups must be a
translate of i or e2πi/3. Their isotropy groups must be conjugate to the isotropy
groups of one these two points.

Corollary 2.2.6. The action of PSL2(Z) is properly discontinuous, which
means that for every point p ∈ H, there is a neighbourhood U such that gU∩U =
∅ for all but finitely many g.

We can give A1 the quotient topology where U ⊆ A1 is open if and only its
pullback to H, under the projection π : H→ A1 is open.

Proposition 2.2.7. The topology on A1 is Hausdorff. In fact, it is homeomor-
phic to C

Proof. The first statement follows immediately from the last corollary. Using
the above results, one can see that A1 is obtained by gluing the two bounding
lines of F and folding the circlular boundary in half. This is easily seen to be
homeomorphic to the sphere minus the north pole.
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A1 has a natural compactification Ā1 given by adding single point at infinity
to make it a sphere. We will follow the convention of the automorphic form
literature and call it a cusp. It is important to keep in mind that this clashes
with the usual terminology in algebraic geometry, that a cusp is a singularity
of the form y2 = x3. We will refer the last thing as cuspidal singularity in
order to avoid confusion. We can construct this a quotient as follows. Let
H∗ = H∪Q∪{∞} ⊂ P1. The action of Γ on P1 stabilizes H∗. On H it coincides
with the standard action, and on Q ∪ {∞} it consists of a single orbit. Thus
Γ\H∗ = Ā1 as a set. In order to get the correct topology on the quotient, one
needs a somewhat exotic topology of H∗. On H it’s the usual one, but on ∂H∗
a fundamental system of punctured neighbourhoods of (a translate of) ∞ are
(translates of) strips Im z > n, n ∈ N. These can be visualized as interiors of
circles tangent to the boundary circle ∂H.

2.3 Modular forms

Since A1 has a topology, we can talk about continuous functions on it. We can
see that f : A1 → C is continuous if and only if it’s pullback π∗f := f ◦ π
is continuous. Let us also declare that a function on an open subset of A1 is
holomorphic or meromorphic if its pullback to H has the same property. This
means that such functions correspond to Γ-invariant functions on H. Before
constructing nontrivial examples, we want to relax the condition. We say that
f is automorphic, with automorphy factor φγ(z), if it satisfies the functional
equation

f(γz) = φγ(z)f(z)

This is very similar to what we did with theta functions. If we have two such
functions with the same factor, their ratio would be invariant. Note that for
this to work, we need to impose a consistency condition

φγξ(z)f(z) = f(γξz)

= φγ(ξz)f(ξz) = φγ(ξz)φξ(z)f(z)

Cancelling f , leads to a so called cocycle condition on the automorphy factor

φγξ(z) = φγ(ξz)φξ(z)

As the terminology suggests, φγ does give an element of a certain cohomology
group. Rather than pursuing this direction, let us look for natural automorphic
forms/factors in nature. Given a meromorphic differential form ω = f(z)dz on

H, let us see how it transforms under γ =

(
a b
c d

)
∈ SL2(Z). We can see that

ω 7→ f(γ · z)d
(
az + b

cz + d

)
= (cz + d)−2f(γ · z)dz
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We say that f(z) is a weakly modular form of weight 2, with respect to Γ, if
f(z)dz is invariant. We say that f is weakly modular of weight 2k if it

f(z) = (cz + d)−2kf

(
az + b

cz + d

)
(2.2)

This means that the tensor f(z)dz⊗k is invariant. More generally, it makes
sense to consider weakly modular forms of arbitrary integer weight `, satisfying

f(z) = (cz + d)−`f

(
az + b

cz + d

)
However, when ` is odd, taking γ = −I, shows that f = −f , so it’s zero! Natural
nonzero examples do exist for other groups however, as we shall see shortly.

To drop the “weakly”, we impose holomorphy conditions on H but also at
infinity. To understand what the last part means, we first note that by using S
and T , (2.2) is equivalent to

f(z + 1) = f(z)

f(−1/z) = zkf(z)
(2.3)

The first condition means that we have a Fourier expansion

f(z) =

∞∑
−∞

ane
2πinz =

∞∑
−∞

anq
n

where q = e2πiz. Note that as z → i∞, q → 0. So we want to think of q as the
local parameter at infinity. Then the Fourier series becomes the Laurent series
in q. f is a modular form of weight 2k if it is holomorphic in H, (2.2) holds,
and the Fourier coefficients an = 0 for n < 0. It is called a cusp form of weight
2k if in addition a0 = 0.

Theorem 2.3.1. The Eisenstein series

G2k(z) =
∑
Z2−0

1

(mz + n)2k

is a modular form of weight 2k, when k ≥ 2.

∆(z) = (60G4(z))3 − 27(140G6(z))2

is a cusp form of weight 12.

Proof. The sum can be seen to converge uniformly on compact sets, so it must
converge to a holomorphic function on H. One has

G2k(
az + b

cz + d
) = (cz + d)2k

∑ 1

(ma+ ndc)z + (mb+ nd))2k
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The vectors (ma + ndc,mb + nd) can be seen to run over Z2 − 0. So the right
side can be rewritten as

(cz + d)2kG2k(z)

as required.
We have to check holomorphy at infinity. By uniform convergence, we can

evaluate the limit as z →∞ term by term. When m 6= 0, have (mz+n)−2k → 0
as z →∞. Therefore

lim
z→∞

G2k(z) = 2

∞∑
n=1

1

n2k
= 2ζ(2k)

where ζ is the Riemann zeta function. Euler gave explicit formulas for the values

ζ(4) =
π4

90

ζ(6) =
π6

945

This allows us to evaluate limz→∞∆(z) and check that it’s zero.

Corollary 2.3.2.

j(z) = 1728
(60G4(z))3

∆

is weakly modular of weight 0.

Finally, let us consider Jacobi’s theta function. This is a function of two
variables θ(z, τ). We already studied the behaviour in the first, now we consider
the second where we set z = 0.

θ(0, τ) =
∑
n∈Z

exp(πin2τ)

From this formula, we see that

θ(0, τ + 2) = θ(0, τ)

There is also a somewhat subtler functional equation.

Theorem 2.3.3. We have

θ(0,−1/τ) =
√
−iτ θ(0, τ)

where the complex square root needs to be handled with the usual care.

Sketch. We need the Poisson summation formula [DM], which tells us that

∞∑
n=−∞

f(n) =

∞∑
n=−∞

f̂(n)
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where f is a rapidly decreasing smooth (aka Schwartz) function, and

f̂(v) =

∫ ∞
−∞

f(u)e−2πiuvdu

is its Fourier transform. The Fourier transform of the Gaussian e−πu
2τ is

τ−1/2e−πv
2/τ . Therefore the Poisson summation formula shows that

T (1/y) =
√
yT (y)

where T (y) = θ(0, iy). The theorem follows by analytic continuation.

Corollary 2.3.4.
θ(0,−1/τ)2 = −iτθ(0, τ)2

The last equation plus the previous periodicity suggests that θ(0, 1/τ)2 is a
modular form of some kind. In fact, it is a modular form of weight one for a
subgroup Γ(4) to be defined below. See [MT, p 39].

2.4 Modular curves

With the topology of X(1) = Ā1 constructed earlier, which is homeomorphic to
P1, we can construct a sheaf of functions OX(1) as follows. Let Γ(1) = SL2(Z).

Given a Γ(1)-invariant open set Ũ ⊂ H, let us say that a holomorphic function f
on it is modular of weight 2k if (2.2) holds and the negative Fourier coefficients

vanish when ∞ ∈ Ũ . Given an open set U ⊂ X(1), let f ∈ OX(1)(U) be a
modular form on the preimage π−1U ∩ H of weight 0. We can view f as a
function on U , where the value at z ∈ U − {∞} is the value at any of the
preimages, and the value at ∞ is the zeroth Fourier coefficient.

Proposition 2.4.1. The ringed space (X(1),OX(1)) is a Riemann surface.

Sketch. The key point is to show that any point x ∈ X(1) has a neighbourhood
D with a homeomorphism z, called a local coordinate or parameter, to a disk
in C, such that holomorphic functions on both disks coincide. There are three
cases: x = ∞, x is an image of one of the fixed points i, e2πi/3, or x is any
other point. The first case was essentially done in the last section, q is the local
coordinate at ∞. The third case is straight forward. The map π : H→ X(1) is
unramified over x A local coordinate z at a point y ∈ H lying over x will give a
local coordinate at x. The map π is ramified at i and e2πi/3 with ramification
index e = 2 and 3 respectively. ze will give a local coordinate at the image.

It is worth noting that the images of i and e2πi/3 are nonsingular, and
therefore no different from any other point from this point of view. However,
these points clearly are special. One way to keep track of this, is the to use the
language of orbifolds or stacks. To simplify our story, we won’t do this here.
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Given an integer N > 0, the principal congruence subgroup of level N of
Γ(1) = SL2(Z) is

Γ(N) = ker Γ(1)→ SL2(Z/N) = {M ∈ Γ(1) |M ≡ I mod N}

A congruence group is a subgroup of Γ(1) containing some Γ(N). It therefore
has finite index in Γ(1). Some other important examples are

Γ1(N) = {M ∈ Γ(1) |M ≡
(

1 ∗
0 1

)
mod N}

Γ0(N) = {M ∈ Γ(1) |M ≡
(
∗ ∗
0 ∗

)
mod N}

We have inclusions
Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ Γ(1)

We can compute the indices.

Proposition 2.4.2.

(a)

[Γ(1) : Γ(N)] = N3
∏(

1− 1

p2

)
where p runs over primes dividing N .

(b)

[Γ(1) : Γ1(N)] = N2
∏(

1− 1

p2

)
(c)

[Γ(1) : Γ0(N)] = N
∏(

1 +
1

p

)
Proof. We have [Γ(1) : Γ(N)] = |SL2(Z/N)|, [Γ1(N) : Γ(N)| = |Z/N | and
[Γ0(N),Γ1(N)] = |(Z/N)∗|. These can be checked to yield the above formulas.

Lemma 2.4.3. Γ(N) is torsion free once N ≥ 3.

Given such a group, it will act on H∗, let Y (Γ′) = Γ′\H and let X(Γ′) =
Γ′\H∗. The points of X(Γ′)−Y (Γ′) are called cusps. We write Y (N), Y1(N) etc.
when the groups are Γ(N),Γ1(N). A meromorphic function f on H is weakly
modular form of weight 2k, with respect to Γ′, if (2.2) holds for matrices in Γ′.

The isotropy group of ∞ is a finite index subgroup of 〈
(

1 1
0 1

)
〉 so it is of the

form 〈
(

1 n
0 1

)
〉 for some n. This implies that a weakly modular form satisfies

f(z + n) = f(z)
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So that it has a Fourier expansion in q = e2πiz/n. A similar Fourier expansion
occurs at all the other cusps. We say that f is a modular (resp. cusp) form if
it is holomorphic in H and the negative (resp. nonpositive) Fourier coefficients
at each cusp vanish. When extend this to the case where the domain of f is
an invariant open set. Then we can turn Y (Γ′) ⊂ X(Γ′) into Riemann surfaces
exactly as above. These are called modular curves. We have a holomorphic map

X(Γ′)→ X(Γ(1)) = A1
∼= P1

induced by inclusion Γ′ ⊂ Γ(1). This is a branched covering. So we can compute
the genus using the Riemann-Hurwitz formula, which says that if Y → X is a
degree d branched covering of compact Riemann surfaces of genus g(Y ) and
g(X), then

2g(Y )− 2 = (2g(X)− 2)d+
∑
y∈Y

(ey − 1)

where ey is the ramification index which counts the number of sheets which
“come together” at y. We will use this to compute for most of the principal
congruence groups. More general formulas can be found in [DS, S2].

Theorem 2.4.4. When N ≥ 3, the genus of X(N) = X(Γ(N)) is

g = 1 +
d(N − 6)

12N

where

d =
1

2
[Γ(1) : Γ(N)] =

N3

2

∏(
1− 1

p2

)
The genus of X(2) is zero.

Proof. The covering π : X(N)→ X(1) is Galois with groupG = PSL2(Z)/ im Γ(N) =
PSL2(Z/N). The degree of this covering |G| = d, when N ≥ 3, and d = 6
when N = 2. Let p2 and p3 represent the images of i and e2πi/3 in X(1).
Then p2, p3,∞ are the ramification points. Given one of these points p, and
q ∈ π−1(p), eq is the order of the isotropy group Gq = {g ∈ G gq = q}. This
independent of q, because all the isotropy groups are conjugate. It also follows
that |π−1(p)| = d/|Gq|. So we can make a table consisting of p, |π−1(p)|, |eq|:

p2, d/2, 2

p3, d/3, 3

∞, d/N,N
Putting these into Riemann-Hurwitz and simplifying proves the theorem.

Using this formula, we can see that the first nonzero value for g occurs
at N = 7, then g = 3. Note that X(7) has an action of PSL2(Z/7). The
cardinality of this 168 = 84(g − 1), which is the maximal possible size for an
automorphism group by a theorem of Hurwitz. Formulas for the genera of other
modular curves can be found in [DS, S2].
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2.5 Dimension of spaces of modular forms

Given a smooth curve X and a divisor D, let Ω1
X(D) = Ω1

X ⊗OX(D). It can be
identified with OX(K+D), where K is a canonical divisor. The space of global
sections Γ(X,Ω1

X(D)) can be identified with the space of meromorphic 1-forms
ω satisfying divω +D ≥ 0.

Theorem 2.5.1. Suppose that Γ′ is a torsion free congruence group. Let X =
X(Γ′) and let D =

∑
pi be the sum of cusps. The space weight 2k modular forms

(resp. cusp forms) M2k(Γ′) (resp. S2k(Γ′)) is isomorphic to Γ(X,O(kK+kD))
(resp. Γ(X,O(kK + (k − 1)D)). In particular, S2(Γ′) ∼= Γ(X,Ω1

X)

Proof. Let f(z) ∈ M2k(Γ′). Then f(z)(dz)⊗k is a Γ′-invariant holomorphic
section of (Ω1

H)⊗k, so it descends to a holomorphic section of (Ω1
Y (Γ′))

⊗k. We

have to check what happens near a cusp. We have a local coordinate q = e2πiz/n.
By assumption f can be expanded as

∑∞
0 amq

m, with a0 = 0 for a cusp form.
We have dz = (n/2πi)dq/q. So

f(z)(dz)⊗k =
( n

2πi

)k
(a0q

−k + a1q
1−k + . . .)dq⊗k

So the theorem follows.

Corollary 2.5.2. Suppose that X has genus g with m cusps, then

dimS2k(Γ′) =

{
g if k = 1

(2k − 1)(g − 1) + (k − 1)m if k > 1

Proof. The first case is an immediate consequence of the theorem. For the
second, we use Riemann-Roch.

h0(O(kK + (k − 1)D)) = h0(O(kK + (k − 1)D))− h0(O((1− k)K − (k − 1)D)

= deg(kK + (k − 1)D) + 1− g

A product of a modular form of weight 2k and 2` is clearly a modular form
of weight 2(k + `). Therefore

⊕
k S2k(Γ′) is a graded C-algebra.

Corollary 2.5.3. The algebra of modular forms is finitely generated.

Proof. This follows from the standard fact that the algebra⊕
k

H0(X,O(kE))

is finitely generated, whenever X is a compact Riemann surface and E is divisor
with degE ≥ 0.

We refer to [DS, S2] for more general formulas allowing k to be odd and Γ′

to have torsion. Using these formulas, one can show that the algebra of modular
forms for SL2(Z) is generated by the Eisenstein series G4 and G6.
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2.6 Moduli interpretation

As we saw, Y (1) parameterizes elliptic curves. While it’s intuitively clear what
this means, the actual statement requires a bit more precision. Let us define an
analytic family of (compact) complex manifolds to be a (proper) holomorphic
submersion of complex manifolds f : E → B. We recall that a submersion is
map such that derivative is surjective on tangent spaces. This implies that fibres
Eb = f−1(b) are complex submanifolds. By an analytic family of elliptic curves
we mean an analytic family of compact complex manifolds f : E → B with a
holomorphic section s : B → E such that each fibre Eb is a compact Riemann
surface of genus one. We can regard Eb as an elliptic curve with origin s(b).
Given an elliptic curve E, recall that we have a number j(E) ∈ C defined by an
explicit formula.

Theorem 2.6.1. Y (1) has the following properties:

(a) The map E 7→ j(E) gives a bijection between the set of isomorphism
classes of elliptic curves over C and points of Y (1),

(b) Given an analytic family elliptic curves E → B, the map B → Y (1), called
the classifying map, given by b 7→ j(Eb) is holomorphic.

The statement can be strengthened to completely characterize Y (1), but we
need a bit of terminology. Let Ellan(B) be the set of isomorphism classes of
analytic families of elliptic curves over B, where isomorphism has the obvious
meaning. Given a holomorphic map B′ → B, the pullback E 7→ E ×B B′

gives a map Ellan(B) → Ell(B′) which makes it into a contravariant functor.
More generally, let M(−) be contravariant functor from the category of complex
manifolds (or schemes or...) to sets; one thinks of elements of M(B) as families
of objects over B of interest. We say that M is representable by U , or that U is
a fine moduli space for M , if there is a natural isomorphism of functors

M(B) ∼= Hom(B,U)

Yoneda’s lemma, in category theory, tells us that U is completely determined
by this property, and moreover it carries a universal family such that any object
in M(B) is the pullback of it under some map B → U . Although this is ideal
scenario for any moduli problem, it fails for Ellan. This is because there exists
nontrivial families in Ellan(B) with constant j-invariant. Here is a general
construction.

Example 2.6.2. Let E be either Ei or Eexp(2πi/3) Either curve has a nontrivial

automorphism group G, which is cyclic in both cases. Choose a manifold B̃ on
which G acts freely, e.g. C∗. The quotient (E × B̃)/G → B̃/G is a nontrivial
family with constant j-invariant.

In spite of this bad news, we do have a natural transformation Ellan(B)→
Hom(B, Y (1)), which is universal in an appropriate sense, and which induces
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a bijection when B is a point. We say that Y (1) is the coarse moduli space for
Ellan.

The other modular curves have similar interpretations. Let us explain the
characterizations of Y (N) = Y (Γ(N)) in a somewhat informal way. Given
Eτ = C/Z + Zτ , the image of ( 1

N ,
τ
N ) gives a basis for the N -torsion points in

Eτ . We refer to this as a level N -structure; we will give a more precise definition
below. If A ∈ Γ(N), then the induced isomorphism Eτ ∼= EA·τ takes the above
level N -structure of the first curve to the level structure of the second. In order
to make this notion independent of our representation of Eτ as a quotient, we
note that the lattice is isomorphic to homology Lτ ∼= H1(Eτ ,Z). Thus a level
N -structure is a choice of basis for H1(E,Z/NZ) = H1(E,Z)⊗ Z/NZ, but not
just any basis. The group carries an intersection pairing

H1(E,Z/N)×H1(E,Z/NZ)→ Z/N

So now we can give the precise definition. A level N -structure is a basis for
H1(E,Z/NZ), which is symplectic in the sense that the matrix of the above
pairing is (

0 1
−1 0

)
Theorem 2.6.3. Y (N) is the coarse moduli space of elliptic curves with level
N -structure. When N ≥ 3 it is a fine moduli space.

Recall that the assumptionN ≥ 3 is precisely the condition to guarantee that
Γ(N) is torsion free. This same condition also allows us to kill the automorphism
groups which created the problem in example 2.6.2.

For the other moduli spaces, we have similar interpretations. Y1(N) =
Y (Γ1(N)) is the coarse moduli space of pairs (E,P ) consisting of an elliptic
curve E and a point P of order N . Y0(N) is the moduli space of pairs (E,C)
consisting of an elliptic curve and a cyclic subgroup of the group of N -torsion
points. The projections

Y (N)→ Y1(N)→ Y0(N)→ Y (1)

induced by the inclusions

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ Γ

have moduli interpretations. Given E a level N -structure is a pair of N -torsion
points P,Q satisfying suitable conditions. The map Y (N)→ Y1(N) corresponds
to the forgetful map (E,P,Q) 7→ (E,P ).

2.7 Models over number fields

So far we have considered modular curves as Riemann surfaces, but in fact they
are algebraic curves. This is true of any compact Riemann surface minus a finite
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set of points. However, a more natural way to see this is to consider algebraic
versions of the moduli problems consider earlier. As a bonus this will show
that these curves are naturally defined over number fields and even over rings
of integers. This is very important for applications to number theory. Let us
start with Y (1). We consider the corresponding moduli problem in the algebraic
setting. Given a scheme B, an elliptic curve over it is a smooth proper map is
a smooth proper map f : E → B , with a section, such that the closed fibres of
f are genus one curves. Let Ell(B) denote the isomorphism classes of elliptic
curves over B. Then Y (1)Z = SpecZ[j] is a coarse moduli scheme for Ell(−),
and this gives a model for Y (1) over the integers, i.e. Y (1) is the complex
manifold associated to Y (1)Z ×SpecZ SpecC.

Next let us turn to Y (N). We can formulate the definition of level structure
of an elliptic curve over an arbitrary field k. In this case, we need N to be
prime to the characteristic. Then a level N -structure is a pair of N -torsion
points P,Q ∈ E(k) such that they generate the group of N -torsion points and
such that eN (P,Q) is a primitive N -root of unity. Here eN is the Weil pairing
whose definition can be found in [Si]. Note that the condition forces k to contain
a primitive N -root of unity. More generally, there is a notion of a level structure
for an elliptic curve over a base scheme. This is basically a pair of sections which
induces a level structure on the closed fibres.

Theorem 2.7.1. There exists a scheme Y (N) defined over Z[1/N, e2πi/N ] which
is the coarse moduli space of elliptic curves with level N -structure. It is a fine
moduli when N ≥ 3. The set of complex points is the Riemann surface Γ(N)\H
considered before.

See Deligne-Rapoport [DR] for the construction in general. They also give a
more general construction which would include the Yi(N). Y0(N) is particularly
interesting because it is defined over Q. When N is small, Y (N) can be made
very explicit. We have

Y (2) = SpecZ[
1

2
, t,

1

t(t− 1)
]

Although this is not fine, there is an “almost” universal family called the Leg-
endre family

y2z = x(x− z)(x− tz)
in P2

Z. Over a field, this curve has 4 branch points over 0, 1, t,∞. Take the first
to be the origin, and the next two to be the level 2-structure.

When N = 3, let R = Z[1/3, e2πi/3], then

Y (N) = SpecR[t,
1

t3 − 1
]

The universal family is given by the elliptic curve

x3 + y3 + z3 = 3txyz

in P2
R with section [1,−1, 0]. The level 3-structure is given by the sections

[−1, 0, 1] and [−1, e2πi/3, 0].
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Chapter 3

Hilbert and Picard modular
surfaces

3.1 The Hilbert modular group

Let D > 0 be square free integer (D is not divisible by any squares other than
1). Let K = Q(

√
D) be the corresponding real quadratic field. This is Galois

over Q, with Galois group generated by the involution (a+ b
√
D)′ = a− b

√
D.

The norm N(x) = xx′ and trace tr(x) = x + x′. There are two embeddings of
fields σi : K ↪→ R given by

σ1(a+ b
√
D) = a+ b

√
D

σ2(a+ b
√
D) = a− b

√
D

This gives an embedding of groups SL2(K) ↪→ SL2(R)2 by A 7→ (σ1(A), σ2(A)).
The ring of integers OK ⊂ K is the integral closure of Z in K. More

explicitly,

OK =

{
Z + 1+

√
D

2 Z if D ≡ 1 mod 4

Z +
√
DZ if D ≡ 2, 3 mod 4

OK is a Dedekind domain, so we can define the class group Cl(OK) in the usual
way, as the group of fractional ideals modulo principal ideals. This is a finite
group; its cardinality h is called the class number of K.

Lemma 3.1.1. If we embed OK ↪→ R2 by σ1 × σ2, then the image is discrete.

This is false with only a single σi.

Proof. This is elementary. For example, when D ≡ 2, 3 mod 4, this follows
from the inequality

(a+ b
√
D)2 + (a− b

√
D)2 = a2 + b2D ≥ 1

for a nonzero integer a+ b
√
D.
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The Hilbert modular group (for a given K) is ΓK = SL2(OK). This embeds
into SL2(R)2 as above. From the previous lemma, we easily deduce:

Corollary 3.1.2. The image of the Hilbert modular group in SL2(R)2 is discrete
with respect to the usual topology.

Given a nonzero ideal I ⊂ OK , we can define the corresponding principal
congruence group as

ΓK(I) = ker[SL2(OK)→ SL2(OK/I)]

This applies, in particular, to an ideal of the form (N), N where N is a nonzero
integer.

Lemma 3.1.3. ΓK(N) is torsion free when N ≥ 3.

Proof. [F, p 42].

We will refer to a subgroup containing some Γ(N) as a conguence group.

3.2 Hilbert modular surfaces: topology

Fix K = Q(
√
D) as before. The group ΓK acts on H2 through its embedding

into SL2(R)2. To be more explicit, given (z1, z2) ∈ H2 and A ∈ ΓK , A·(z1, z2) =
(A · z1, A · z2). The action factors through PSL2(OK) = SL2(OK)/{±I}.

Proposition 3.2.1. This action is properly discontinuous.

Proof. This follows from the discreteness of ΓK by [F, p 21].

Let Γ ⊆ ΓK be a congruence subgroup. The quotient Xo(Γ) = Γ\H2, and
various related objects, are called Hilbert modular surfaces or sometimes Hilbert-
Blumenthal surfaces. The proposition implies that the quotient topology has
reasonable properties (e.g. it is Hausdorff). However, the action of PSL2(OK)

is not free. For instance,

(
0 −1
1 0

)
fixes (i, i). If we restrict to a torsion free

subgroup such as ΓK(3), then the action becomes free. It follows that isotropy
subgroup of Γ for any point of H2 is finite. In fact, one can show that they are
cyclic. We claim that the image of any fixed point in Xo(Γ) is topologically
singular in the sense that Xo(Γ) is not even a topological manifold at that
point. To see this, we can work locally. A local model for this is given as
follows. Choose a finite cyclic subgroup G ⊂ GL2(C), such that C2 has no
nonzero invariant vectors. The quotient C2/G is a singular algebraic variety.
In the simplest example, G = {±1}, u = x2, v = y2, w = xy generate the ring
of invariant polynomials, and C2/G = V (uv − w2). A n-manifold X has the
property that any point x ∈ X has a fundamental system of neighbourhoods
U , such that that U − x is homotopy equivalent to Sn−1. This is not true for
C2/G, with its usual topology.
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Finally, we note that Xo(Γ) is not compact. We can compactify it, as we did
for modular curves, by adding cusps. We embed P1(K) → P(R)2 by σ1 × σ2.
Using this, we can regard points of P(K) as lying on the boundary of H2 via

P1(R)2 ⊂ P1(C)2 ⊃ H2

A Γ-orbit of point of P1(K) is called a cusp with respect to Γ. Given a point
[a, b] ∈ P1(K), we let (a, b) denote the fractional ideal generated by these ele-
ments. Although this ideal is not well defined, its class in Cl(OK) is.

Proposition 3.2.2. The above map gives a bijection between the set of cusps
for ΓK and Cl(OK).

Proof. Let φ : P1(K) → Cl(OK) denote the above map. It is known that any
fractional ideal of OK is generated by two elements. Therefore φ is surjective.

If A =

(
a b
c d

)
then

φ(A · [x, y]) = (ax+ by, cx+ dy) ⊆ (x, y)

The same argument, using A−1, gives the opposite inclusion. Therefore φ factors
through a map φ̄ : ΓK\P1(K)→ CL(OK).

It remains to prove that φ̄ is injective. We assume two points of P1(K) have
the same image under φ. For simplicity, we treat the case where on the points
is ∞ = [1, 0]. Denote the other by [x, y]. We can assume that both x, y ∈ OK .
Since (x, y) = φ(∞) = (1), we must have ax+ by = 1 for some a, b ∈ OK . Then

A =

(
a b
−y x

)
lies ΓK and it maps [x, y] to ∞. Therefore they lie in the same ΓK-orbit.

Corollary 3.2.3. ΓK has h cusps. A congruence subgroup Γ ⊂ ΓK has a finite
number of cusps.

Let (H2)∗ = H2 ∪ P1(K). We put a topology on this, such that

1. It agrees with the usual one on H2

2. The sets of form

UC = {(z1, z2) | Im (z1)Im (z2) > C} ∪ {∞}, C ∈ R+

forms a fundamental systems of neighbourhoods of ∞.

3. If p = A∞, with A ∈ SL2(K), then AUC forms a fundamental system of
neighbourhoods of p.

Let Γ ⊂ ΓK be a congruence group. Let X(Γ) = Γ\(H2)∗ = Xo(Γ)∪{cusps}
with the quotient topology. To analyze the quotient, we let Γp be the isotropy
group of a cusp p. The structure of this group is essentially given as follows.
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Lemma 3.2.4. There exists a rank 2 group additive subgroup M ⊂ K, and finite
index multiplicative subgroup V ⊆ {u ∈ O∗K | u totally positive, i.e. σi(u) > 0}
such that the V stabilizes M , and the group

G(M,V ) = {
(
ε µ
0 ε−1

)
| µ ∈M, ε ∈ V }

has finite index in Γp.

Lemma 3.2.5.

1. For any C > 0, Γ∞ stabilizes UC and Γ∞\ŪC is compact.

2. For C � 0, the image of UC in X(Γ) is homeomorphic to Γ∞\UC

3. If p = A∞ is a cusp different from ∞, i.e. if p does not lie in the Γ orbit
of ∞, then for C � 0, the images of UC and AUC in X(Γ) are disjoint.

Proof. See [G2, pp 7-9].

Theorem 3.2.6. X(Γ) is compact Hausdorff.

Proof. Using the previous lemma, one can build a compact fundamental domain.
See [F, p 38] for details.

3.3 Hilbert modular forms

In order to discuss the analytic properties of Hilbert modular surfaces, we need
the appropriate category. An analytic space is to a complex manifold what an
algebraic variety, or more generally scheme, is to a nonsingular variety. A basic
example is to start with an open ball B ⊂ CN , choose a collection of holomorphic
functions f1, f2, . . . , fn and consider the zero set Z = {x ∈ B | fi(x) = 0}. We
refer to this as a model. In general, an analytic space is something which locally
looks like a model. To make this more precise, we can proceed as with scheme
theory (for those familiar with them) by introducing a sheaf. For our model
Z, let OZ denote the sheaf of restrictions of holomorphic functions from B to
Z. A (reduced) analytic space is a pair (X,OX) consisting of a paracompact
Hausdorff space, and a sheaf of continuous complex valued functions, such that
it is locally isomorphic (as a locally ringed space) to a pair given by a model.
See Grauert-Remmert [GR] for further details (where analytic spaces are called
complex spaces). An analytic space (X,OX) is called normal if all its stalks
OX,x are integrally closed. Here are a couple of examples.

1. Complex manifolds are normal because the stalks are rings of convergent
power series, and these are regular noetherian and therefore integrally
closed.

2. If G ⊂ GLn(C), then Cn/G is normal. Away from 0, it’s a manifold, The
stalk at 0 is the ring of G-invariant convergent power series, and this is
easily seen to be integrally closed.
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The importance of this condition for us stems from the following. Suppose
that X is normal, then:

1. The set of singular points (points where it fails to be a manifold) has
codimension at least 2 [GR, p 128]

2. Any holomorphic function defined on the nonsingular part of X extends
to a holomorphic function on X [GR, p 144]

Here is a useful criterion.

Theorem 3.3.1 (Cartan). Suppose that X − {x} is a normal analytic space,
and there is a system of neigbourhoods U of x such that U − {x} is connected
and such that holomorphic functions in U − {x} separate points. If we define
f : U → C to be holomorphic if it is continuous and holomorphic away from x,
then X becomes a normal analytic space.

Proof. [C, exp 11].

Let K, (H2)∗,Γ ⊆ ΓK and X = X(Γ) be as before. We have projections
π : (H2)∗ → X and πo : H2 → X. If U ⊆ X is open, define f ∈ OX(U) if it
continuous and if f ◦ πo is holomorphic.

Theorem 3.3.2. (X,OX) is a normal analytic space.

Proof. Away from the cusps, this is easy by the above remarks. At a cusp, say
∞, one checks Cartan’s criterion holds. The topological condition for theorem
3.3.1 is clearly satisfied. We just have to check the second. Given a bounded
holomorphic function f on UC , the associated Poincaré series, which is the sum∑

A∈Γ∞

f(A · z)

can be shown to converge to a Γ∞-invariant holomorphic function [F, p 57-58,
p 113]. This construction yields sufficiently many holomorphic functions on
Γp\UC to separate points.

The singular points of X consist of images of the fixed points in H2 and
the cusps. Since X is normal, we can define holomorphic functions, and re-
lated things, by prescribing them away from these points. So for example, a
holomorphic function on X is given by a ΓK-invariant function on H2. Such a
function is necessarily constant by compactness of X. To get something more
interesting, we have to relax the invariance condition. A Hilbert modular form
of weight (k, `), with respect to Γ, is a holomorphic function on H2 satisfying

f

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
= (cz1 + b)k(c′z2 + b′)`f(z1, z2) (3.1)

for every element of Γ. We say this has weight k, when k = `, and this what we
mostly care about. By a calculation similar to what we did earlier, we can see
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that f is a weight 2k modular form precisely when the tensor f(dz1 ∧ dz2)⊗k is
invariant under ΓK . Note that, unlike the one dimensional case, we don’t have
to impose any extra holomorphicity conditions at the cusps, since this comes
for free by normality. This fact, which can be checked to directly, goes by name
of the “Koecher principle”. To be see this, recall that is the cusp p ∈ P1(K) is
stable under translations by

G(M,V ) ⊃
{(

1 µ
0 1

)
| µ ∈M

}
∼= Z2

for some choice of (M,V ). The functional equation (3.1) forces periodicity with
respect to this group. Therefore we have a Fourier expansion. The extension
property amounts to showing that that the negative degree Fourier coefficients
automatically vanish. In fact, a bit more is true.

Proposition 3.3.3. A holomorphic function f at p has a Fourier expansion

f(z1, z2) = a0 +
∑
ν∈M∨

aν exp(2πi(νz1 + ν′z2))

where M∨ = {ν ∈ K | ∀µ ∈M, tr(µν) ∈ Z}. Furthermore, we have

aεν = aν , ∀ε ∈ V (3.2)

and aν = 0 unless ν is 0 or totally positive.

Proof. The Fourier expansion and (3.2) follows from the invariance under the
group G(M,V ). Suppose that aν 6= 0 where ν 6= 0 is not totally positive. Then
for ε ∈ V , ε > 1, one finds that the sequence exp(−2π tr(εnν)) is bounded away
from 0. This, together with (3.2), would force the Fourier series to diverge along
the ray {(ir, ir) | r ∈ R+}.

A modular form is called a cusp form if it vanishes at all the cusps, or
equivalently if the zeroth Fourier coefficients are all zero. We will mainly be
concerned with the case ` = k, in which case we call this is a modular form of
weight k. We denote the space of these by Mk(Γ), and subspace of cusp forms
by Sk(Γ). We give a basic example. We try to form the series∑ 1

[(cz1 + d)(c′z2 + d′)]k

where k is even and (c, d) runs over O2
K . This will have the right formal proper-

ties, but it will diverge. The problem is that terms are repeated infinitely often.
We can correct the problem by choosing (c, d) to range over a set of represen-
tatives for the orbit space O2

K/O∗K under (c, d) 7→ (εc, εd). Then for k > 2, this
will converge to an element of Mk(ΓK) called an Eisenstein series.

One of the things we can use Hilbert modular forms for is to embed X into
projective space. If f0, . . . , fN is a collection of Hilbert modular forms of the
same weight k, then we get a map X 99K PN by x→ [f0(x), . . . , fN (x)].
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Theorem 3.3.4 (Baily-Borel). There are sufficiently many modular forms of
some weight to get an embedding X ↪→ PN

Baily and Borel’s [BB] theorem holds not just for Hilbert modular surfaces,
but more generally for quotients of hermitian symmetric spaces by arithmetic
groups. In particular, their theorem will apply to various other the examples
considered later on. By using an extension of Chow’s theorem due to Serre
[GAGA], we obtain

Corollary 3.3.5. X is a normal projective variety.

This has a moduli interpretation, but the explanation will have to wait until
we get to abelian varieties.

3.4 Riemann-Roch for surfaces

Fix K, . . . ,X = X(Γ) as above. Since X is a normal projective surface, we
can use methods from algebraic geometry to study it. We also need to appeal
to Serre’s GAGA theorem [GAGA], to switch from holomorphic to algebraic
objects. As a first step, we need to resolve the singularities.

Theorem 3.4.1. There exists a regular map π : Y → X such that

(a) Y is nonsingular.

(b) π is an isomorphism over the nonsingular locus of X.

(c) If Y ′ is a nonsingular surface through which π factors, then Y = Y ′

We fix one such surface Y (Γ) = Y , which is called a minimal resolution of
X. We note that is unique under some additional assumptions, and it always
exists by the general theory [BPV]. In the present case, it can be constructed
quite explicitly [G2]. The explicit construction yields more information, which
is needed to prove some of the results below. For example, it known that the
preimage of a cusp (resp. non-cusp singularity) is a cycle (resp. chain) of
rational curves.

We recall some basic facts from algebraic surface theory. Fix a nonsingular
projective surface S over an algebraically closed field k. We will only need the
case where k = C, but state the results more generally when possible. A divisor
on S is a finite sum D =

∑
niCi, where ni ∈ Z and Ci ⊂ X are possibly singular

irreducible closed curves. Any such curve determines a discrete valuation ordC
on the field of rational functions k(S), which measures the order of zero or pole
along it. If f is a nonzero rational function on S, we can define the associated
principal divisor div f =

∑
ordC(f)C. The divisor class group Cl(S) is defined

as for curves by the abelian group of all divisors by the subgroup of principal
divisors. If ω is a rational 2-form, we can define divω =

∑
ordC(ω)C with a

suitable definition of ordC(ω). The divisor class is independent of ω and it is
called the canonical divisor class KS , or simply K (it is unlikely to be confused
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with the field). Given a divisor D, we define sheaf OS(D) exactly as for curves.
In particular, the space of global sections

H0(S,OS(D)) = {f ∈ k(S)∗ | div f +D ≥ 0} ∪ {0}

This is finite dimensional, and we denote its dimension by h0(OS(D)). The
isomorphism class of OS(D) depends only only the class of D in Cl(S). The
sheaf OS(K) is isomorphic to the sheaf of regular 2-forms Ω2

S = ∧2Ω1
S . In

particular, h0(O(K) is the dimension of the space of regular 2-forms. This is
one of the fundamental invariants of S, called the geometric genus pg(S). There
is a new phenomenon for surfaces, namely divisor can be intersected. Suppose
that C and D are distinct irreducible curves. Then C∩D is finite. If p ∈ C∩D,
define the intersection multiplicity at p by

(C ·D)p = dimOS,p/(f, g) = dim ÔS,p/(f, g)

where OS,p is the local ring of the surface at p, and f, g are local equations of C
and D in this ring. For example, this number is 1 if C and D are nonsingular
and meet transervely at p, because f and g generate the maximal ideal of the
completion ÔS,p. Define the intersection number

C ·D =
∑

p∈C∩D
(C ·D)p (3.3)

Theorem 3.4.2. There exists a bilinear form Cl(S)×Cl(S)→ Z which agrees
with the above intersection number whenever it is defined.

Proof. See [H, chap 5, sec. 1].

We come to the main point. One would like a formula for h0(OS(D)) for
any divisor, but what one has is a formula for the Euler characteristic

χ(O(D)) = h0(O(D))− h1(O(D)) + h2(O(D))

where hi represent dimensions of higher cohomology groups. One can view the
higher hi above as corrections. These will be dealt with shortly.

Theorem 3.4.3 (Riemann-Roch for surfaces). For any divisor

χ(O(D)) =
1

2
D · (D −K) + χ(OS)

When k = C
χ(OS) =

K2 + e(S)

12

where e(S) is the topological Euler characteristic.

Proof. For the first formula, see [H, chap 5, sec. 1]. The second is special case
of the Hirzebruch-Riemann-Roch theorem [BPV, p 20]
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In order to get an exact formula for h0(O(D)), we need to combine Riemann-
Roch with a so called vanishing theorem. We use the famous Kodaira vanishing
theorem. We work over C since the result can fail in positive characteristic. A
divisor D is called ample if O(nD)) has sufficiently many sections to give an
embedding of S into projective space for all n� 0.

Theorem 3.4.4 (Kodaira Vanishing). Assume k = C. If D is an ample divisor,
then

Hi(X,O(K +D)) = 0 i > 0

Proof. See [GH, chap 1] for a proof. We remark that it true in arbitrary dimen-
sion. Kodaira’s original formulation, which is used in the reference, is that the
line bundle O(D) carries metric with positive curvature. This is equivalent to
ampleness by Kodaira’s embedding theorem. There is now a purely algebraic
proof, due to Deligne and Illusie, which uses the above formulation

Let us return to our Hilbert modular surface Y . We assume for simplicity
that Γ is torsion free. The union of preimages of the cusps in X forms a divisor
D. The structure of D can be determined rather explicity [G2, chap 2]. As
we saw, an element of M2(Γ) gives an invariant holomorphic 2-form on H2 and
therefore a holomorphic form on Xo(Γ). If it vanishes at the cusps, then it
would extend to a holomorphic form, and therefore regular form, on Y . In fact,
the converse holds also.

Theorem 3.4.5. There is an isomorphism between S2(Γ) ∼= H0(OY (K)). There-
fore the dimension of this space is the geometric genus pg(Y ).

Proof. [G2, p 57].

For higher weight, we have:

Theorem 3.4.6. The divisor F = K + D is ample, and for any m > 0, we
have an isomorphism

S2m(Γ) ∼= H0(Y,OY (K + (m− 1)F ))

Proof. [G2, p 72].

From Kodaira vanishing plus Riemann-Roch, we obtain:

Corollary 3.4.7.

dimS2m(Γ) =
m− 1

2
(K + (m− 1)F ) · F + χ(OY )

The right side can be evaluated in explicit terms. See [G2, chap IV, sect 4]
for a more complete discussion.
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3.5 Picard modular surfaces

Let
B = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1}

denote the ball in C2. This can be identified with the subset

B′ = {[z1, z2, z3] ∈ P2 | |z2
1 + |z2|2 − |z3|2 < 0}

of the complex projective plane, under (z1, z2) 7→ [z1, z2, 1]. If we introduce the
nonpositive definite hermitian form H on C3 with matrix

J =

1 0 0
0 1 0
0 0 −1


then

B′ ∼= {[v] ∈ P2 | H(v, v) < 0}
Let

SU(2, 1) = {A ∈ GL3(C) | ĀTJA = J ,detA = 1},
denote the special unitary group associated to H. Clearly this group acts on B′

The following is straightforward.

Lemma 3.5.1. SU(2, 1) acts transitively on B′.

Now we fix a square free integer D > 0 and consider the imaginary quadratic
field K = Q(

√
−D). We have embeddings σi : K → C, and involution x 7→ x′,

and the ring of integers OK described exactly as in the real quadratic case. Let
V = K3 with a lattice L ⊂ V , i.e. an OK-submodule such that K ⊗ L ∼= V .
We assume that V is equipped with a form H0 which is Hermitian in the sense
that H0(ax, y) = aH0(y, x), H0(x, y) = H0(y, x)′ for a ∈ K and x, y ∈ V , and
OK-valued on L. We suppose that after extending scalars to C, using either
σ1 or σ2 (it won’t matter), H0 has signature (2, 1). For example, H0(x, y) =
xTJy′ satisfies these conditions, but it is not the only choice. We can form
the special unitary group SU(H0), which is the subgroup of SL3(K) of linear
transformations which preserve H0. The subgroup ΓK,H0

⊂ SU(H0) stabilizing
the lattice L is called a Picard modular group. We will fix the above data, and
simply denote this group by Γ. By our assumptions, H0 can be identified with
H after extending scalars, so we can embed Γ ⊂ SU(2, 1). This gives an action
of Γ on B. The action is seen to be properly discontinuous. Therefore the
quotient Xo = Xo(Γ, H0) = Γ\B inherits a Hausdorff topology.

The space Xo is not compact. We can compactify it by adding a finite
number of points, again called cusps. Using the model B′, we see that it has a
natural boundary ∂B′ consisting of lines generated by vectors which isotropic
in the sense that H(v, v) = 0. Let

B∗ = B′ ∪ {[v] | v ∈ Q3, v isotropic}

It is not difficult to see that Γ acts on this. Once again we have
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Theorem 3.5.2 (Baily-Borel). For a suitable topology on B∗, the quotient X =
Γ\B∗ is compact. This can be given the structure of a normal algebraic surface.

As above, we can construct a minimal resolution Y of X. This, and related
objects, are called Picard modular surfaces.
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Chapter 4

Abelian varieties

4.1 Abelian varieties

An abelian variety is a higher dimensional version of an elliptic curve. Here is
the precise definition. Over a field k, an abelian variety consists of a smooth
projective variety X over k, a k-rational point 0 and morphisms + : X×X → X
and − : X → X which make it into a group. We have the following basic facts:

Theorem 4.1.1. An abelian variety is a commutative group. When k = C,
an abelian variety has the structure of a complex torus, i.e. as a complex Lie
group, it is isomorphic to Cg modulo a lattice.

Proof. See Mumford [MAV, p 2, p 44].

We now focus on the case where k = C. We can ask when is a complex torus
Cg/L an abelian variety? The naive guess is that it is always true, but turns
out to be incorrect once g > 1. A necessary condition for a compact complex
manifold to be projective is that it has at least one nonconstant meromorphic
function, but this can fail for higher dimensional tori. To formulate sufficient
conditions, we modify what we did before with elliptic curves, but now we
replace the element τ in the upper half plane with a g × g symmetric matrix Ω
with positive definite imaginary part. The set of such matrices forms a complex
manifold Hg, that we call the Siegel upper half plane. Given such a matrix, we
can form the lattice LΩ = Zg + ΩZg; ΩZg means the group of integer linear
combinations of columns of Ω. Define the complex torus AΩ = Cg/LΩ. Since
Im Ω is positive definite, the terms in the series

θ(z) =
∑
n∈Zg

exp(πinTΩn+ 2πinT z)

go to zero rapidly as ||n|| → ∞. So it converges to a holomorphic function called
the Riemann theta function. This is a generalization of the Jacobi function. It
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satisfies a similar functional equation

θ(z + n) = θ(z)

θ(z + Ωn) = exp(−πikntΩn− 2πikztn)θ(z)
(4.1)

for all n ∈ Zg and k = 1. More generally, a holomorphic function satisfying
these equations is called a theta function of weight k. Any theta function can
be expanded in a Fourier series by the first equation of (4.1), and the second
leads to recurrence relations on the Fourier coefficients, which shows that the
function is determined by finitely many coefficients. In particular, the space of
theta functions of given weight can be seen to be finite dimensional.

Theorem 4.1.2 (Lefschetz). AΩ is an abelian variety.

Idea. Consider the vector space V of all theta functions of weight 3. If f0 . . . , fN
is a basis of V , we can see that the point [f0(z), . . . , fN (z)] ∈ PN depends only
on z mod LΩ. We claim that

x 7→ [f0(z), . . . , fN (z)]

is defined everywhere and gives an embedding of φ : AΩ → PN . By considering
products of the form

θ(z + u)θ(z + v)θ(z − u− v) ∈ V, u, v ∈ Cg

we find a theta function which is nonzero at any given z0 ∈ Cg. This shows that
φ(z0) is defined. By the same method, one generates sufficiently many functions
to separate points, and to show injectivity of dφ. See [MAV, pp 29-33] for full
details.

Let us characterize lattices of the form L = LΩ = Zg + ΩZg, with Ω ∈ Hg,
in coordinate free language. Let e1, . . . eg, be the standard basis of Zg. We can
extend this to basis of L, by taking eg+i to be the ith column of Ω. The vectors
e1, . . . , e2g form a real basis of Cg. Let E : Cg × Cg → R be the real bilinear
form with matrix (

0 I
−I 0

)
(4.2)

with respect to this basis. By definition, it is skew symmetric E(v, u) =
−E(u, v).

Lemma 4.1.3.

(a) E(u, v) = Im (ut(Im Ω)−1v̄)

(b) E(u, v) ∈ Z, when u, v ∈ L.

(c) E(iu, iv) = E(u, v)

(d) E(iu, v) is symmetric positive definite.
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(e) There exist a positive definite hermitian form H on Cg, such that E =
ImH.

Proof. Item (a) can be checked by calculation, (b) is clear, and (c) and (d)
follow from (a). These conditions show that

H(x, y) = E(ix, y) + iE(x, y)

satisfies (e). It is worth noting that (c) and (d) also follow from (e).

Given a lattice L ⊂ Cg, a nondegenerate skew-symmetric form E : Cg×Cg →
R satisfying (b), (c) and (d) (or equivalently (b) and (e)) is called a polarization
or Riemann form. It is called principal if in addition detE = 1. This implies,
by standard linear algebra arguments, that L possesses a basis such that E is
given by (4.2). Since E and H above determine each other, H is also sometimes
referred to as the polarization.

Lemma 4.1.4. If L has a principal polarization, then after choosing suitable
bases for Cg and L, we have L = LΩ for some Ω ∈ Hg.

Proof. We will say a bit more about this later on.

We can thus rephrase theorem 4.1.2 as saying that Cg/L is an abelian variety
if L possesses a principal polarization. In fact, by allowing arbitrary polariza-
tions, we get an if and only if statement.

Theorem 4.1.5 (Riemann, Lefschetz). Cg/L is an abelian variety if and only
if L possesses a polarization.

The “if” direction can be proved using theta functions, as above. Let us
briefly explain the converse from the viewpoint of complex algebraic geometry
[GH], because it explains what E actually means. From algebraic geometry, we
know that an embedding X ⊂ PN is determined by the very ample divisor class
H +X ∩ (hyperplane) or the very ample line bundle L = OX(1). This has the
advantage of giving an object on X which doesn’t depend on any “external”
data. The divisor H determines a homology class [H] ∈ H2 dimX−2(X,Z), and
by Poincaré duality a cohomology class [H] ∈ H2(X,Z). This coincides with the
first Chern class c1(L) ∈ H2(X,Z), which is the basic topological invariant of a
line bundle. Since X is a torus, we can identify H2(X,Z) = ∧2Hom(L,Z). In
other words, c1(L) can be viewed as an alternating integer valued pairing E on
the lattice L. This means that E satisfies condition (b) for a polarization. On
the other hand, since c1(L) is the restriction of c1(OPN (1)), it can be represented
by the normalized curvature of the Fubini-Study metric. In particular, it can
also be represented by a real differential form, called the Kähler form,

ω =

√
−1

2

∑
jk

hjkdzj ∧ dz̄k

with hjk positive definite hermitian. This can be used to show that E satisfies
(e) as well.

From this discussion, we obtain.
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Corollary 4.1.6. Under the identification H2(X,Z) = ∧2Hom(L,Z), an ele-
ment is a polarization if and only if is the first Chern class of an ample line
bundle.

Although polarizations do not traditionally appear in the theory of ellip-
tic curves, they exist and are easy to describe. When X is an elliptic curve
H2(X,Z) ∼= Z. Under this isomorphism, the Chern class of a divisor c1(O(D))
is just its degree degD. It is ample, and therefore corresponds to a polarization,
if degD is positive. And it is principal, when degD = 1. So X has a unique
principal polarization.

4.2 Jacobians

Let X be a nonsingular projective curve of genus g. Recall that

g = dimH1(X,OX) = dimH0(X,Ω1
X)

Earlier, we took the groups on the right to be sheaf cohomology of the sheaves of
regular functions/forms on the Zariski topology, we can also (and will) interpret
these as the cohomology groups of the sheaves of holomorphic functions/forms
on the classical topology. This is justified by Serre’s GAGA theorems. We want
to explain that g is the same topological genus, which one half the dimension of
the first de Rham cohomology group H1(X,C) of closed C∞ complex 1-forms
modulo exact forms.

a

b1

a21

b2

Let say that a 1-form α is harmonic if in any system of local analytic coordinates
z = x+ iy, α = df(x, y) where f is harmonic in the usual sense, i.e. it lies in the

kernel of ∂2

∂x2 + ∂2

∂y2 . (This definition is a bit nonstandard, but people familiar

with the the usual condition (d∗d + dd∗)α = 0 should be able to check the
equivalence.) The key fact, that we state without proof, is the Hodge theorem
(which is really due to Weyl in the case of Riemann surfaces).

Theorem 4.2.1 (Hodge theorem). H1(X,C) is isomorphic to the space of har-
monic 1-forms.

Holomorphic 1-forms are harmonic for example, since any such form is locally
df with f holomorphic, and basic complex analysis teaches us that holomorphic
functions are harmonic. Conversely, a harmonic (1, 0)-form, i.e. a form locally
a multiple of dz, is necessarily holomorphic. We can also see that a (0, 1)-form
(a multiple of dz̄) is harmonic if and only if it is a conjugate of a holomorphic
1-form. Thus:
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Corollary 4.2.2 (Hodge decomposition). We have decomposition

H1(X,C) = H10(X)⊕H01(X)

where H01(X) = H10(X) and H10 = H0(X,Ω1
X). In particular, dimH1(X,C) =

2g.

We should explain how to interpret complex conjugation in the above result.
To give a conjugation a complex vectors space V is tantamount to finding real
vector space VR and an isomorphism VR ⊗ C ∼= V ; then v ⊗ a = v ⊗ a. For
V = H1(X,C), we take VR = H1(X,R) to be the de Rham cohomology of
real differential forms. Basic facts from topology (the de Rham and universal
coefficient theorems), tells us that we can take this further. If H1(X,Z) ∼= Z2g

is singular cohomology with integer coefficients, then

H1(X,C) ∼= H1(X,Z)⊗ C
H1(X,R) ∼= H1(X,Z)⊗ R

(4.3)

To make this more explicit, note that the dual Hom(H1(X,Z),Z) can identified
with the homology H1(X,Z). Elements of this are represented by (sums of )
closed smooth loops on X. Given a form α representing a class in H1(X,C),
the map (4.3) sends α to the functional γ 7→

∫
γ
α.

We will also consider the transpose of this map (4.3)

H1(X,Z)→ H1(X,C)∗, γ 7→
∫
γ

This restricts to
H1(X,Z)→ H0(X,Ω1

X)∗ (4.4)

We define the Jacobian J(X) as quotient

J(X) =
H0(X,Ω1

X)∗

H1(X,Z)

where we identify H1(X,Z) with its image.

Proposition 4.2.3. J(X) is a complex torus.

Proof. Given α ∈ H1(X,C), write α10 ∈ H10(X) and α01 ∈ H01(X) for its
components with respect to the Hodge decomposition. Let p : H1(X,R) →
H10(X) be defined by p(α) = α10. Suppose that p(α) = 0. Then α = α10 +
α01 = 0. Therefore p is injective. It follows that p is an isomorphism, because
both space have the same real dimension. Consequently, we can identify the
image of (4.4) with the image of H1(X,Z) in H1(X,R)∗ which is a lattice.

Let L = H1(X,Z) ∼= Z2g be the lattice defining J(X). We have an intersec-
tion pairing

E : L× L→ Z
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where E(γ, γ′) counts the number of times γ intersects γ′, with signs. That is
if the curves are transverse

E(γ, γ′) =
∑

p∈γ∩γ′

±1

according to

+1 −1

There are various ways to construct this rigorously. One way is to construct the
dual pairing on H1(X,Z) using the cup product. In terms of the embedding
H1(X,Z) ⊂ H1(X,R), this given by integration

E(α, β) =

∫
X

α ∧ β

Theorem 4.2.4. E is a principal polarization. Therefore J(X) is an abelian
variety.

Proof. It is already clear from the above formula that E is skew symmetric.
Poincaré duality shows that its determinant is +1. If we pullback E to H10(X)
under the isomorphism p above, we have

E(α, β) =

∫
X

(α+ ᾱ) ∧ (β + β̄) =

∫
X

α ∧ β̄ + ᾱ ∧ β

It follows that E(iα, iβ) = E(α, β). Finally suppose α = f(z)dz where f is
nonzero holomorphic. Since

iα ∧ ᾱ = 2|f(z)|2dx ∧ dy

we conclude that
E(iα, α) > 0

Finally, let us explain what information J(X) carries. Choose a base point
x0, and define the Abel-Jacobi map

AJ : X → J(X)

by

AJ(x) =

∫ x

x0

∈ H10(X)∗ mod H1

The integral is only defined after choosing a path from x0 to x, but its image in
J(X) does not depend on it. Given a divisor D =

∑
nixi, we define AJ(D) =∑

niAJ(xi).
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Theorem 4.2.5 (Abel-Jacobi). We have an isomorphism of abelian groups

Cl0(X) ∼= J(X)

induced by AJ , where Cl0(X) is the degree zero part of the divisor class group.

4.3 Siegel modular varieties

If Ai = Vi/Li are complex tori, we will say that they are isomorphic (respectively
isogenous) if there is a linear isomorphism φ : V1 → V2 such that φ(L1) = L2

(resp. φ(L1) ⊆ L2).

Lemma 4.3.1. Isogeny is an equivalence relation.

Proof. Transitivity and reflexivity are obvious. We only have to prove that
isogeny is symmetric. If φ : V1 → V2 is an isomorphism such that φ(L1) ⊆ L2,
then L1 is a sublattice of φ−1(L2). Therefore Nφ−1(L2) ⊂ L1 for some N . This
means that Nφ−1 is an isogeny in the opposite direction.

In case these are abelian varieties, an isomorphism in this sense is automati-
cally an isomorphism of algebraic varieties by [GAGA]. If Ai are equipped with
polarizations Ei, we say that φ is an isomorphism of polarized abelian varieties
if φ preserves the forms Ei, i.e.

E1(u, v) = E2(φ(u), φ(v))

The problem of describing all abelian varieties up to isomorphism does not have
a good solution, but the polarized version does. We now describe it.

Lemma 4.3.2. An abelian variety is isogenous to a principally polarized abelian
variety. Any principally polarized abelian variety of dimension g is isomor-
phic, as a polarized abelian variety, to an abelian variety of the form AΩ =
Cg/LΩ, LΩ = ΩZg + Zg with

E =

(
0 I
−I 0

)
for some Ω ∈ Hg.

Proof. The first statement is [BL, 4.1.2]. The second is just a restatement of
lemma 4.1.4

Of course, the Ω in the previous lemma is not unique. Let us introduce the
symplectic group. Given a commutative ring R (e.g. Z,R) we define

Sp2g(R) =
{
M ∈ GL2g(R) |MTEM = E

}
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Lemma 4.3.3. Given Ω ∈ Hg and M =

(
A B
C D

)
∈ Sp2g(R)

M · Ω = (AΩ +B)(CΩ +D)−1 ∈ Hg

This defines an action of Sp2g(R) on Hg which is transitive. The isotropy group
of iI is {(

A B
−B A

)
| ABT = BAT , AAT +BBT = I

}
∼= Un(R)

where the isomorphism is given by sending(
A B
−B A

)
7→ A+ iB

Proof. For M as above, one checks the following identities: ATC and BTD are
symmetric, and ATD − CTB = I. After expanding, using the above identities,
and canceling, we obtain

(CΩ +D)T (M · Ω− (M · Ω)T )(CΩ +D) = Ω− ΩT = 0

Therefore M · Ω is symmetric. Similarly

(CΩ +D)T (ImM · Ω)(CΩ +D) = Im Ω > 0

which implies that ImM · Ω is positive definite.
Let Ω = X + iY ∈ Hg. Since Y is symmetric and positive definite, we can

find an A ∈ GLg(R) so that Y = AAT . Then M =

(
A X(AT )−1

0 (AT )−1

)
sends iI

to Ω. The formula for the isotropy group can be checked by calculation.

Corollary 4.3.4. Thus Hg ∼= Sp2g(R)/Ug(R).

Let us now explain the idea for the proof of lemma 4.1.4. Given a principally
polarized abelian variety (V/L,E). Choose a symplectic basis λ1, . . . , λ2g for
L. A basis is symplectic if E is represented by the matrix (4.2). Use the first
g vectors λ1, . . . , λg as a basis for V . Then if we write the remaining vectors
λg+1, . . . , λ2g in the last basis, we get a g × g matrix Ω. One can see that the
conditions for a polarization force Ω ∈ Hg [BL, §4.2]. So once we fix the initial
basis λi, Ω is determined. If λ′i is a different symplectic basis, then we get a
different Ω′ ∈ Hg. The relationship is easy to work out. The change of basis
matrix λ′i =

∑
mijλj is necessarily in Sp2g(Z).

Lemma 4.3.5. Ω′ = M · Ω.

We define

Ag = Sp2g(Z)\Hg = Sp2g(Z)\Sp2g(R)/Ug(R)

This is called a Siegel modular variety. Although at the moment it is just a set.
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Corollary 4.3.6. There is a natural one to one correspondence between el-
ements of Ag and isomorphism classes of g dimensional principally polarized
abelian varieties.

Next, we study the action of Sp2g(Z) on Hg.

Lemma 4.3.7. The action of Sp2g(Z) is properly discontinuous. Therefore the
quotient is a Hausdorff space.

Proof. Given compact sets K1,K2 ⊂ Hg, we have to show that S = {M ∈
Sp2g(Z) | M(K1) ∩ K2 6= ∅} is finite. Let us identify Hg = Sp2g(R)/Ug(R)
as above. Note that the group Ug(R) is compact, so that the projection p :
Sp2g(R) → Hg is proper. M ∈ Sp2g(Z) lies in S if and only if Mp−1K1 ∩
p−1K2 6= ∅ if and only if M ∈ T = (p−1(K1))−1p−1(K2). Now T is compact
because it is the image of K1 ×K2 under (M1,M2) 7→M−1

1 M2. Therefore S is
the intersection of a compact set with a discrete set, so it’s finite.

The action has fixed points. The solution, as before, is to pass to a congru-
ence subgroup

Γ(N) = ker[Sp2g(Z)→ Sp2g(Z/NZ)]

Proposition 4.3.8. If N ≥ 3, then Γ(N) is torsion free.

Proof. We assume that γ 6= I is an element of Γ(N) of finite order. We can
assume that the order is a prime p, by replacing γ a power. Then by assumption,
I − γ = Nφ where φ ∈ M2g×2g(Z). Let ζ be a nontrivial eigenvalue of γ, and
let η be the corresponding eigenvalue of φ. We have a relation

Nη = 1− ζ (4.5)

This implies η ∈ Q(ζ). Furthermore, η is also an algebraic integer because
it satisfies the characteristic polynomial of φ. Suppose p = 2, then ζ = −1.
Equation (4.5) implies N |2, which is a contradiction because N ≥ 3. Now
suppose p ≥ 3. Then ζ is a primitive pth root of unity and, as already noted,
η is an algebraic integer in the cyclotomic field Q(ζ). Taking the norm of (4.5)
with respect to Q(ζ)/Q yields an equality of integers

Np−1Norm(η) = (1− ζ)(1− ζ2) . . . (1− ζp−1) = p

But this is impossible because p is prime.

A consequence of the proposition is that Γ(N), with N ≥ 3, acts freely on
Hg. So the quotient

Ag,N = Γ(N)\Hg
can be seen to be a manifold. In more detail, define OAg (U) (and OAg,N

(U))

as to correspond to invariant holomorphic functions on the preimage Ũ ⊂ Hn.
Since the action of Γ(N) is free, we find that

Proposition 4.3.9. When N ≥ 3, Ag,N is a complex manifold.

Ag is a quotient of Ag,N by the finite group Sp2g(Z/NZ). Therefore

Corollary 4.3.10. (Ag,OAg
) is a normal analytic space.
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4.4 Siegel modular varieties are moduli spaces

As we did for elliptic curves, we want to upgrade corollary 4.3.6 to a more
precise statement. Let us formulate it more generally for Ag,N . Given AΩ =
Cg/ΩZg + Zg, the standard basis of the lattice mod N is called a level N -
structure. One can see that M ∈ Γ(N) preserves this basis. In general, a
level N -structure on a principally polarized abelian variety A is a basis of
H1(A,Z/NZ) which is symplectic with respect to the form induced by the polar-
ization. In more algebraic terms, it can also be taken as basis of the N -torsion,
which is symplectic in the appropriate sense.

Theorem 4.4.1. Ag,N is the coarse moduli space for principally polarized g
dimensional abelian varieties with N -structure. When N ≥ 3, this is a fine
moduli space.

The last statement means that there is a universal family of abelian varieties
with the above structure. We will now outline the construction. Given M =(
A B
C D

)
∈ Sp2g(R) and (Ω, z) ∈ Hg × Cg, define

M · (Ω, z) = (M · Ω, ((CΩ +D)T )−1z)

Lemma 4.4.2. This defines an action.

Proof. [MT, p 177].

We define a real linear isomorphism

iΩ : R2g → Cg

given by sending (v1, v2) ∈ Rg × Rg to Ωv1 + v2. If λ ∈ Z2g, let

λ · (Ω, z) = (Ω, z + iΩ(λ))

Let Γ̃ (resp. Γ̃(N)) be the subgroup of the group of holomorphic automorphisms
of Hg × Cg generated by Sp2g(Z) (resp. Γ(N)) and Z2g. A calculation shows

that Z2g is a normal subgroup of Γ̃. It follows that Γ̃ is a so called semidirect
product Sp2g(Z) n Z2g. This means that we have a split exact sequence

1→ Z2g → Γ̃→ Sp2g(Z)→ 1

In more explicit terms, Γ̃ is isomorphic to the cartesian product Sp2g(Z)×Z2g,
with multiplication

(g1, a1)(g2, a2) = (g1g2, a1 + g1a2)

With the help of this structure, we can see that the action of this group on
Hg × Cg is properly continuous, and free when restricted to Γ̃(N), for N ≥ 3.
Consequently the quotient

Ug,N = Γ̃(N)\Hg × R2g
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is a complex manifold. Projection on the first factor yields a holomorphic map
π : U → Ag,N . The fibre over a point corresponding to Ω is the abelian variety
AΩ. This is our desired universal family.

An application of Baily-Borel shows that Ag,N is a quasiprojective variety.
Using a completely different construction, Mumford [GIT] proved that

Theorem 4.4.3 (Mumford). Ag,N is the set of complex points of a quasipro-
jective scheme over SpecZ. This is a coarse moduli space for all N . It is fine,
and smooth over SpecZ[1/N, exp(2πi/N)], when N ≥ 3.

The fact that this space exists over Z has a number of important arithmetical
applications. For example, Faltings [F1] used this in an essential way in his
original proof of the Mordell conjecture:

Theorem 4.4.4 (Faltings). A smooth projective curve of genus ≥ 2 defined
over a number field K, has only finitely many K-rational points.
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Chapter 5

The endomorphism algebra

5.1 Endomorphisms of elliptic curves

A homomorphism between abelian varieties f : V/L → W/M is given by a
C-linear map F : V → W such that F (L) ⊆ M . This is called an endomor-
phism if the abelian varieties are the same. Our goal is to study the ring of
endomorphisms End(A), of an abelian variety. We start with elliptic curves.

Theorem 5.1.1. Let E = C/Z + Zτ , then either

1. End(E) = Z or

2. Q(τ) is an imaginary quadratic field, and End(E) is an order in Q(τ) i.e.
a finitely generated subring such that End(E)⊗Q = Q(τ).

Proof. Let L = Z + Zτ . Then End(E) can be identified with R = {α ∈ C |
αL ⊆ L}. For α ∈ R, there are integers ab, c, d such that

α = a+ bτ, ατ = c+ dτ

By Cayley-Hamilton, or direct calculation, we see that

α2 − (a+ d)α+ ad− bc = 0

Therefore R is an integral extension of Z.
Suppose that R 6= Z, and choose α ∈ R but α /∈ Z. Then eliminating α from

the top two equations yields

bτ2 − (a− d)τ − c = 0

Therefore Q(τ) is quadratic, and necessarily imaginary quadratic because τ is
not real. Furthermore, R ⊂ Q(τ) is an order.
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5.2 Poincaré reducibility

A homomorphism between abelian varieties f : V/L → W/M f is called an
isogeny if F is an isomorphism, and an isomorphism if in addition F (L) = M .
Isomorphisms are always bijections, while isogenies a finite to one surjections.
For example, multiplication by a nonzero integer n : V → V induces an isogeny,
which is not an isomorphism unless n = ±1. Two abelian varieties X and Y
are called isogenous if there exists an isogeny from X to Y . Recall

Lemma 5.2.1. Isogeny is an equivalence relation.

We gave a direct proof earlier. We can give another proof, by interpreting
isogeny in a fancier way. The collection of abelian varieties and homomorphisms
forms an additive category AbV ar. We can form a new category AbV arQ with
the same objects but with morphisms given by HomQ(X,Y ) = Hom(X,Y )⊗Q.
We also set End(X) = Hom(X,X) and EndQ(X) = End(X) ⊗ Q. These
are both not necessarily commutative rings. The previous lemma is now an
immediate consequence of the observation:

Lemma 5.2.2. Two abelian varieties are isogenous if and only if they are iso-
morphic in AbV arQ.

Corollary 5.2.3. EndQ(X) depends only on the isogeny class of X.

Theorem 5.2.4 (Poincaré). If X ⊂ Y is an injective homomorphism of abelian
varieties, then Y is isogenous to a product X with another abelian variety.

Proof. Suppose that Y = V/L then X = W/L ∩W for some subspace W ⊂
V Let W⊥ be the orthogonal complement with respect to a polarization H.
Then this is also the orthogonal complement with respect to E = ImH by
lemma 4.1.3. Equivalently, W⊥ is the kernel of the map v 7→ E(v,−). Since
this transformation can be represented by a rational matrix with respect to a
basis of L, this implies that dimQ LQ ∩W⊥ = dimRW

⊥. Therefore L∩W⊥ is a
lattice in W⊥, so we can form torus Z = W⊥/L∩W⊥. This is an abelian variety
polarized by the restriction of H. The identity map W ⊕W⊥ = V defines an
isogeny X × Z → Y .

Remark 5.2.5. When Y has a polarization which restricts to a principal polar-
ization of X, the map X × Z → Y can be seen to be an isomorphism, cf. [BL,
5.3.13]. This is not true in general.

An abelian variety is simple if it contains no nontrivial abelian subvarieties.

Corollary 5.2.6. An abelian variety is isogenous to a product of simple abelian
varieties.

We turn now to the structure of the endomorphism ring EndQ(X). In gen-
eral, it is noncommutative. The following is a standard argument in represen-
tation theory.
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Theorem 5.2.7. If X is simple, then EndQ(X) is a finite dimensional division
algebra over Q. In general, EndQ(X) is a product of matrix algebras over finite
division algebras over Q.

Proof. The finite dimensionality is clear from construction, since EndQ(X) ⊂
End(L ⊗ Q) where L is the lattice. Suppose that X is simple and that f ∈
EndQ(X) is nonzero. We have to show that f has an inverse. After replacing
f by nf , we can assume that it is a homomorphism f : X → X. It is enough
to show that it is an isogeny. Since f(X) ⊂ X is nonzero abelian subvariety, it
follows that f(X) = X. Consider ker(f) ⊂ X. It must be finite, since otherwise
the connected component of the identity would give a nonzero abelian subvariety.
It follows that f is an isogeny.

For the second statement, there is no loss in assuming that X =
∏
X ′i

where X ′i simple. We can arrange this as X =
∏
Xni
i where Xi and Xj are

nonisogenous when i 6= j. Given φ : X → X, we can decompose it as a product
of morphisms φij : X ′i → X ′j . Since both X ′i and X ′j are simple, φij is either 0
or an isogeny. Thus we can decompose φ as product of matrices with values in
Di = EndQ(Xi). In other words, we have an inclusion

EndQ(X) ↪→
∏

HomQ(X ′i, X
′
j) =

∏
Matni×ni(Di)

This is clearly surjective as as well.

An algebra of the above type is called semisimple.

5.3 The Rosati involution

There is an extra bit of structure which will be play a very important role. Given
an algebra R over a field. An involution is a map r 7→ r∗ which is linear over
the field, such that (rs)∗ = s∗r∗. For example, transpose gives an involution of
on the algebra of matrices.

Let X = V/L be an abelian variety with polarization H. The adjoint with
respect to H:

H(Ax, y) = H(x,A∗y)

defines an involution on End(V ). The algebra EndQ(X) sits naturally inside
this. It can be identified with the endomorphisms which preserve the rational
lattice LQ = L⊗Q.

Theorem 5.3.1. The subring EndQ(X) ⊂ End(V ) is stable under the involu-
tion ∗.

Proof. If A ∈ End(LQ) define A† ∈ End(LQ) to be the adjoint with respect to
E = ImH i.e. E(Ax, y) = E(x,A†y). This is defined because E is nonsingular.
Given A ∈ EndQ(X), it preserves LQ, so we can form A† ∈ End(LQ). This coin-
cides with the usual adjoint A∗ ∈ End(V ) because ImH(Ax, y) = ImH(x,A∗y).
Therefore A∗ preserves the rational lattice LQ, and thus defines an element of
EndQ(X).
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The restriction of ∗ to EndQ(X) is called the Rosati involution. Although
the construction would seem to be based on a linear algebra trick, there is a
way to make it more geometric. Let V ∗ be the space of complex antilinear maps
V → C. This means that f(av1 + a2v2) = ā1f(v1) + ā2f(v2). This is can be
understood as complex conjugate of the usual dual. Let L∗ ⊂ V ∗ denote the
subset of those maps which are integer valued on L. The quotient X̂ = V ∗/L∗

is a torus, which is in fact an abelian variety. The map v 7→ H(v,−) induces an
isogeny φH between X and its dual X̂ = V ∗/L∗. Thus we have an isomorphism
Φ : EndQ(X) ∼= EndQ(X̂). An endomorphism A : X → X induces a dual

endomorphism Â : X̂ → X̂. Then A∗ ∈ EndQ(X) is Φ−1(Â). All of this can be
described geometrically as follows:

Theorem 5.3.2. There is an isomorphism Pic0(X) ∼= X̂ under which Â cor-
responds to the homomorphism Pic0(X) → Pic0(X) given by L 7→ A∗L. If
M is an ample line bundle on X with the H the first Chern class (as dis-
cussed in section 4.1), then there is an isogeny φH : X → X̂ is given by
φH(x) = T ∗xM ⊗M−1 ∈ X̂. The Rosati involution is given by

A∗ = φ−1
H ÂφH

Proof. [BL, MAV].

Given any finite dimensional Q-algebra R, and element r defines a vector
space endomorphism of R by left multiplication. This is the so called regular
representation. Thus we have a well defined trace Tr(r) ∈ Q. An involution ∗
on R is called positive if Tr(r∗r) > 0 when r 6= 0. Transpose on the algebra of
matrices has this property.

Theorem 5.3.3. The Rosati involution is positive.

Proof. Let D be an ample divisor representing the polarization. One has that

Tr(r∗r) =
2g

Dg
(Dg−1 · r∗D) > 0

See [BL, p 117].

5.4 Division rings with involution

In the first section, we showed that EndQ of an elliptic curve was either Q or an
imaginary quadratic field. In higher dimensions, things are more complicated,
but that they can be understood. Given a simple abelian variety X, EndQ(X)
is a finite dimensional division algebra with a positive involution. Our goal is
to describe all such rings with involution. Over R, things are much are easier.
There are only two (finite dimensional) division algebras over it, the complex
numbers C and the quaternions H = R ⊕ Ri ⊕ Rj ⊕ Rk with i2 = j2 = −1
and ij = −ji = k. Both of these algebras have a positive involution given by
ordinary complex conjugation and quaternionic conjugation (x+yi+zj+wk)∗ =
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x−yi−zj−wk. The construction of quaternions can be generalized to an algebra
given by replacing R by an arbitrary field F , and by modifying the relations to
i2 = a, j2 = b and ij = −ji = k for a, b ∈ F ∗. This algebra is usually denoted

by the Hilbert symbol
(
a,b
F

)
. This carries an involution defined as above. There

are two possibilities, either
(
a,b
F

)
is a division algebra, or it is the algebra of

2× 2 matrices, in which case, we say that it splits. The algebra splits precisely
when the quadratic form ax2 + by2 = 1 has a solution over F . Therefore, when

F = R,
(
a,b
F

)
is nonsplit, and thus H, if and only if a, b < 0.

Over Q, there is a classification of division algebras with positive involution.

Theorem 5.4.1 (Albert). The set of finite dimensional division algebras (D, ∗)
over Q with a positive involution are exactly the ones described below (written
out of the traditional order).

Type I. D = F is a totally real number field F (this means that all complex
embeddings lie in R) We give this the trivial involution x∗ = x.

Type III. D is a quaternion algebra
(
a,b
F

)
over a totally real number field F

with a, b ∈ F totally negative. The involution is the standard one.

Type II. D is a quaternion algebra over a totally real number field F which
splits when extended to R under any embedding F ↪→ R The involution be-
comes conjugate to the transpose on the matrix algebra under each isomorphism
D ⊗F R ∼= M2(R).

Type IV. D is a division algebra whose centre is a CM field F , i.e. a quadratic
extension F = K(

√
−D) of a totally real field K with D totally positive. The

involution restricts to x+ y
√
−D 7→ x− y

√
−D on F .

Proof. We refer to [MAV, pp 193-202] for the proof, and for a more detailed
description in case IV.

Quaternion algebras as in II (resp. III) are also said to be totally indefinite
(resp. definite).

Corollary 5.4.2. The endomorphism algebra of a simple abelian variety must
be one of the above 4 types; the abelian variety is labelled accordingly.

The statement in the corollary can be sharpened somewhat.

Theorem 5.4.3. Suppose that A is a simple abelian variety of dimension g.
Let D = EndQ(A), K the centre, and e = [K : Q]. Then

1. e|g (type I)

2. 2e|g (types II and III)
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3. e0d|g (type IV, where e0 = [F : Q] and d2 = dimQD – it’s always a
square).

Proof. We refer to [BL, §5.5] for the details of the proof. We will be content to
prove a weaker result that dimQD|2g. To see this, observe that the End(X)-
action makes the lattice H1(A,Q) into a D-module, which is necessary free of
rank of rank r say, because D is a division algebra. It follows that r dimQD =
dimQH1(A,Q).

We will see later that all of the categories I-IV occur for abelian varieties,
and almost all of the subcases. The idea is easy to explain for elliptic curves.. In
theorem 5.1.1, we saw that an elliptic curve E = C/Z+Zτ has either EndQ(E) =
Q (special case of type I) or EndQ(E) imaginary quadratic (special case of type
IV). Furthermore, in the second case, EndQ(E) = Q(τ). The converse is simple.

Lemma 5.4.4. Given Q or an imaginary quadratic field, it arises as above.

Proof. To build an elliptic curve with E with EndQ(E) = Q(
√
−d) we can use

E = C/Z+Z
√
−d. For EndQ(E) = Q, suffices to take C/Z+Zτ with Q(τ) not

imaginary quadratic. For example, we can take τ transcendental.

It is clear that “most” E have EndQ(E) = Q. Making this idea work in
higher dimensions will require some understanding of moduli spaces.
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Chapter 6

Introduction to Shimura
varieties

6.1 Hilbert modular varieties.

A g-dimensional abelian variety A is said to have real multiplication if it is of
type I. This means that K = EndQ(A) is a totally real field with degree [K : Q]
dividing g. So the maximum possible degree is g. The endomorphism algebra
R = End(A) is an order in K. This means that R is a subring, which is also an
OK-lattice.

We would like describe all abelian varieties with real multiplication by a
field with maximal degree. Fix a totally real field K, of degree g. We will, in
fact, describe all principally polarized g dimensional abelian varieties A with
End(A) ⊇ OK . As a Z-module, OK ∼= Zg. For each vector τ = (τj) ∈ Hg define
Lτ ⊂ Cg to be the image of O2

K under the map

ιτ (α, β) = (σj(α)τj + σj(β))

where σ1, . . . , σg : K → R are the different embeddings.

Proposition 6.1.1. Lτ is a lattice, and the quotient Aτ = Cg/Lτ is an abelian
variety with OK ⊆ End(Aτ ).

Proof. We note that K ⊗Q R ∼= Rg where the projections to the factors are the
σj . It follows that OK ⊂ K ⊂ Rg is lattice, and therefore so is Lτ ⊂ Cg. Thus
Aτ is a torus. Consider the Hermitian form

H(u, v) =
∑ uj v̄j

Im τj

We claim that this is a polarization. It is clearly positive definite. It remains
to show that the imaginary part ImH is integer valued on the lattice. Let
Estd : O2 ×O2 → Z be the pairing defined by

Estd(α1, α2;β1, β2) = tr(α1β2 − α2β1) (6.1)
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One can check that if (α1, α2), (β1, β2) ∈ O2
K , then

ImH(ιτ (α1, α2), ιτ (β1, β2)) = Estd(α1, α2;β1, β2)

So it is a polarization as claimed. Therefore Aτ is an abelian variety. Further-
more, one can check that the determinant of Estd is 1, so this is a principal
polarization.

Finally, we have an embeddingOK ⊂Mg×g(C) which sends α to the diagonal
matrix with entries σj(α). Lτ is stable under the resultingOK-action. Therefore
OK ⊂ End(Aτ ).

The Hilbert modular group is ΓK = SL2(OK). We can embed this into
SL2(R)g by M 7→ (σj(M)). Thus we get an action of ΓK on Hg. The quotient
ΓK\Hg is called a Hilbert modular variety. This is a moduli space:

Theorem 6.1.2. The points of ΓK\Hg are in one to one correspondence with
isomorphism classes of the following sets of data:

1. A g-dimensional polarized abelian variety (A,E)

2. An inclusion OK ⊆ End(A)

3. An OK-module isomorphism H1(A,Z) ∼= O2
K taking E to Estd.

In one direction, we note that by construction, Aτ carries an inclusion OK ⊆
End(Aτ ) and an isomorphism

H1(Aτ ,Z) ∼= Lτ ∼= O2
K

such that Estd polarizes Aτ .

Lemma 6.1.3. If τ, τ ′ ∈ Hg lie in the same ΓK-orbit, then then there is an
isomorphism Aτ ∼= Aτ ′ compatible with the identifications H1(A?,Z) ∼= O2

K .

Proof. Suppose that M =

(
a b
c d

)
and τ ′ = M · τ . Multiplication by the

diagonal matrix D with entries σj(c)τj + σj(d) gives an isomorphism Cg ∼= Cg
taking Lτ ′ to Lτ . The last part follows from the diagram

Cg/DLτ ′
1 // Cg/Lτ

O2
K

M //

OO

O2
K

OO
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6.2 Shimura varieties of PEL type

Shimura [S1] gave a more general construction of moduli spaces of abelian va-
rieties with extra structure, which includes Hilbert modular varieties as special
cases. The input consists of a semisimple Q-algebra D (not necessarily a division
algebra) with positive involution ∗, centre K and ∗-fixed subfield F . In addition,
we have V a left D-module with a nondegenerate alternating Q-bilinear form
E : V × V → Q such that

E(bu, v) = E(u, b∗v), b ∈ D,u, v,∈ V

We refer to (D,V,E) as a PE (Polarization-Endomorphism) datum. In the lit-
erature, one often adds a lattice in V , and a suitable Level structure, hence one
speaks of PEL data. We can now formulate the basic moduli problem:

Given such data, parameterize all polarized abelian varieties (X,E) with

1. an inclusion EndQ(X) ⊇ D of algebras such that the Rossati involution
agrees with the given involution,

2. and an isomorphism H1(X,Q) ∼= V compatible with E and the D-module
structure.

Shimura [S1] proceeds to construct the moduli spaces on a case by case basis.
We consider only the first case in detail. We want to parameterize abelian
varieties of type I. The PE datum consists of D = K a totally real field of
degree d over Q, with trivial involution, and V = K2m with standard symplectic
form Estd ⊕ Estd ⊕ . . . (6.1). We want to parameterize principally polarized
abelian varieties of dimension g = md satisfying the above conditions. This is a
generalization of Hilbert modular varieties, which correspond to the case m = 1.
Let H = (Hm)d. We have d distinct embeddings σi : D → R. The group
Γ = Sp2m(OK) acts on H through the homomorphism σ : Γ → (Sp2m(R))d

induced by (σi). We claim that the quotient Γ\H parameterizes the abelian
varieties of the above type. To each m-tuple Ω = (Ωi) ∈ H, we define the

subgroup LΩ ⊂
⊕d

i Cm ∼= Cg as the image of OmD ×OmD under the map

(α, β) 7→ (Ωiσi(α) + σi(β))i=1,...,d

where σi : K → R are the various embeddings. One sees that this is a lattice,
and the quotient Cn/LΩ is an abelian variety satisfying the desired conditions.
One application of this construction is the following.

Theorem 6.2.1 (Shimura). The set of Ω ∈ H for which EndQ(AΩ) 6= K is a
countable union of proper analytic subsets.

From the Baire category theorem, we deduce

Corollary 6.2.2. Every totally real field is the endomorphism algebra of some
abelian variety.
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Next, we look at a couple of additional examples, which are very special
cases of type II and IV. First, let us suppose that K = Q. Fix a totally
indefinite quaternion division algebra D over Q. Recall that this means that
D ⊗Q R = Mat2×2(R). For example, D =

(−1,p
F

)
is such an algebra when p is

a prime such that −1 is not a square mod p. For (V,E), we take V = D with
E(x, y) = trD/Q(xαy) for some α ∈ D∗ with α∗ = −α. Choose a lattice L ⊂ D,
L can be viewed as a lattice in Mat2×2(R) via the embedding D ⊂Mat2×2(R).

Given τ ∈ H, L generates a lattice L

(
τ
1

)
⊂ C2. Let

Xτ = C2/L

(
τ
1

)
This is an abelian variety with EndQ(Xτ ) ⊇ D. If Γ ⊂ D∗ is the subgroup
stabilizing the lattice L, the isomorphism class of Xτ depends on the orbit of τ
in Γ\H. Unlike the case of modular curves, the so called Shimura curve Γ\H is
already compact [S2, p 244].

Let us reconsider Picard modular surfaces, but from this viewpoint [LR]. Let
D = F be a imaginary quadratic field with discriminant ∆. Note that

√
∆ ∈ D.

The involution is conjugation, so F0 = Q. The PE datum consists of V = F 3

and E the imaginary part of a hermitian form H with matrix 0 0 1√
∆

0 1 0
−1√

∆
0 1


Let G be the special unitary group of the form H viewed as an algebraic group
over Q. Over R, H as signature (2, 1), so G(R) = SU(2, 1). This acts on
the complex 2-ball B. The Picard modular surface is the quotient Γ\B, where
Γ ⊂ G is the subgroup stabilizing the lattice O3

D ⊂ V .

6.3 Representation theoretic viewpoint

Let us continue the discussion of PE moduli problems, but from a more rep-
resentation theoretic view point, basically following a combination of Mumford
[M] and Deligne [D1].

Fix a PE datum (D,V,E). We can regard the D-module V as a Q-vector
space through the inclusion Q ⊂ D. Since it carries nondegenerate symplectic
pairing, its dimension is necessarily even, call it 2g. The group

G = {g ∈ GLK(V ) | g is D-linear, E(gx, gy) = E(x, y)} (6.2)

is an algebraic group over Q. This means that it is subgroup of GL(V ) which
is also Zariski closed. For any field K, the set of K-rational points

G(K) = {g ∈ GLK(V ⊗Q K) | g is D ⊗K-linear, E(gx, gy) = E(x, y)}

57



also forms a group. When K = R, VR = V ⊗Q R is a real vector space, and
G(R) ⊂ GL(VR) is Zariski closed, so we can view this as a Lie group. Let G(R)o

denote the connected component of the identity with respect to the classical
topology. This embeds into Sp2g(R) as a subgroup.

Choose an element J0 ∈ G(R) such that J2
0 = −I. This turns VR into

a complex vector space V0, where a + bi acts by aI + bJ0. Let U(1) ⊂ C∗
denote the unit circle. Then we can see that h(a + bi) = aI + bJ defines a
homomorphism h : U(1) → G(R) of real algebraic groups such that h(i) = J0.
Since J0 ∈ G(R), we get E(ix, iy) = E(x, y) which is one of the conditions for
being a polarization. However, we have to impose the remaining condition that

(*) E(ix, y) = E(J0x, y) is positive definite.

Then we can see that for any lattice L ⊂ V ⊂ VR such that E takes integer
values on L, A0 = V0/L becomes an abelian variety polarized by E such that
D ⊆ EndQ(A0). This is exactly what we wanted, however it is just on example.
To generate a family of examples, let Jg = g−1J0g for g ∈ G(R). The following
is immediate

Lemma 6.3.1. J2
g = −I and E(Jgx, y) is positive definite.

Therefore we get another abelian variety Ag, constructed as above using Jg.
We can see that this family is parameterized by X = G(R)o/K, where

K = {g ∈ G(R)o | g−1J0g = J0} = {g ∈ G(R) | J0gJ
−1
0 = g}

Lemma 6.3.2. K is a compact subgroup.

Proof. One checks that K lies in the unitary group preserving the hermitian
form H(x, y) = E(J0x, y) + iE(x, , y). The unitary group is compact.

It follows that K is the group fixed by the involution Ad(g) := J0gJ
−1
0 . An

involution with the property that the fixed group is compact is called a Cartan
involution. It can be shown that K is a maximal compact subgroup.

Now we have a family of abelian varieties parameterized by the manifold
X. Ultimately, we would like both the parameter space and the family to be
algebraic varieties. Let us show how to make the space X into a complex
manifold. We just the briefest indication of how this is done, referring to [Mi]
for further details. Let G denote the Lie algebra of G(R). This is the tangent
space at the identity. G(R) acts on itself by conjugation, and the derivative
of this gives he adjoint representation ad : G(R) → GL(G). In particular,
ad(J0) = ad(h(i)) will act on G. Let K and P denote the +1 and −1 eigenspaces
of ad(J0) respectively. K is the Lie algebra of K, and P is the tangent space of
X at 1. ad(h(e2πi/8)) preserves P, and it gives an endomorphism L satisfying
L2 = −I. This makes P into a complex vector space. Since X is a homogeneous
space, all of the tangent spaces become complex vector spaces by translation.
This makes X into an almost complex manifold, and in fact a complex manifold.
Here is the precise statement.
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Theorem 6.3.3. Suppose that G is a real semisimple algebraic group, and
suppose that there is a homomorphism u : U(1)→ G satisfying

1. the only characters of U(1) on Lie(G)⊗ C are 1 and z±1.

2. Ad(u(−1)) is a Cartan involution.

3. u(−1) projects nontrivially onto each simple factor of G

If K is the isotropy group of ad(u) in G0, then G0/K has the structure of a
homogeneous complex manifold described essentially as above. In particular, G0

acts by holomorphic automorphisms on it.

A simple algebraic group is one which has no closed normal subgroups other
than finite groups. An algebraic group is semisimple if it is “almost” a direct
product of simple groups. See Borel [Bo] for the precise definition. Many of the
examples we already encountered such as SLn, SOn, Sp2n, SUn, and their prod-
ucts, are all semisimple. A complex manifold of this type is called a hermitian
symmetric space of noncompact type or simply a hermitian symmetric domain.
Let us now suppose that G is the group of real points of an algebraic group
over Q that we also denote by G. Fix faithful representation G → GLn(Q). A
subroup of Γ ⊂ G(Q) is arithmetic if it contains a subgroup Γ1 ⊆ Γ such that
Γ1 ⊆ G(Q) ∩GLn(Z), and such that both inclusions have finite index. Here is
the precise statement of a theorem we have used several times already.

Theorem 6.3.4 (Baily-Borel). Let G, K ⊂ G(R)0 and Γ ⊂ H(Q) be as above
then Γ\G(R)0/K is a quasiprojective variety.

To apply theorem 6.3.3 in our case, we should replace G by Gad = G/±I,
then we can take “square root” of h, i.e. we can find a character u with u2 = h.
To check the first condition of the theorem, it suffices to check that the characters
of U(1) on Lie(G)⊗ C with respect h are 1 and z±2.

Lemma 6.3.5. Suppose that G is as in (6.2), and h as above, then the charac-
ters of U(1) on Lie(G)⊗ C are 1 and z±2.

Proof. We have an inclusion G(R) ⊆ Sp2g(R), so we may assume equality
holds. Let V be the standard representation of Sp2g(R). If V± denote the
±i-eigenspaces of J0 = h(i) acting on V ⊗ C, then U(1) acts on these with
character z±1 under h. The characters of

G ⊗ C ⊆ V ∗ ⊗ V = End(V+)⊕ End(V−)⊕ (V ∗+ ⊗ V−)⊕ (V ∗− ⊗ V+)

under h are 1, z±2.

The second condition holds because u(−1) = h(i) = J0. The third condi-
tion is also not hard to check. It follows that X is hermitian symmetric. We
take Γ ⊂ G(Q) to the subgroup stabilizing the lattice L. Therefore Γ\X is
quasiprojective. This is the desired moduli space.
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6.4 Deligne’s axioms

We briefly indicate Deligne’s more abstract axiomatization of Shimura varieties
[D1, D2]. Given an algebraic group G, the adjoint group Gad is the image G
under its adjoint representation. This has the effect of dividing G by its centre.
A connected Shimura datum S consists a semisimple algebraic group G over Q
a homomorphism u : U(1)→ Gad(R) such that

S1 The characters of U(1) on Lie(Gad(C)) are z−1, 1, z.

S2 Adu(−1) is a Cartan involution of G(C).

S3 G(R) is noncompact, and this holds for all Q-factors as well.

These conditions are natural in view of what we said in the previous section. We
define K = {g ∈ G(R)0 | gu(x)g−1 = u(x)}, then X = G(R)0/K is a hermitian
symmetric domain. In fact, we have the following

Proposition 6.4.1. To give a connected Shimura datum is equivalent to giving

1. A semisimple group G of noncompact type (S3 should hold),

2. a hermitian symmetric domain X, and

3. a surjective homomorphism G(R)0 → Aut(X)0 with compact kernel, where
Aut(X) is the holomorphic automorphism group of X.

Proof. [Mi, prop 4.8].

Given a connected Shimura datum, and a congruence group Γ ⊂ G(Q), the
associated (connected) Shimura variety (of finite level) is the quasiprojective
variety Sh(X,Γ) = Γ\X. This yields a slick construction of the moduli space
of abelian varieties of PEL type, as will now explain. A Shimura datum is said
to be of Hodge type if there exists an injective homomorphism ι : G ↪→ Sp2g

for some g. The algebraic groups associated to PE data, constructed in the
previous section, will have this property. However, the converse is not true. The
inclusion ι induces a holomorphic map ι′ : X → Hg. We can find a congruence
group Γ1 ⊂ Sp2g(Q), containing Γ. The quotient A′g = Γ1\Hg is the moduli
space of g-dimensional abelian varieties with and suitable level structure and
a fixed polarizational type, which need not be principal. By Borel [Bo2, 3.10],
the map Sh(X,Γ) → A′g induced by ι′ is a morphism of algebraic varieties.
Thus Sh(X,Γ) can be viewed as a moduli space of abelian varieties with extra
structure.

In general, Shimura varieties do not admit embeddings into a variety of the
form A′g, and so do not parameterize abelian varieties. Deligne does show that
they do parameterize certain Hodge structures, and conjectures a more subtle
interpretation involving motives. However, we will not say anything more about
this, and to refer to [Mi] for a more detailed introduction to these ideas. Finally,
we mention a fact which is very important fact for number theoretic applications.
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Theorem 6.4.2. A Shimura variety is defined over Q̄.

For Ag, this was Mumford’s theorem 4.4.3. The result for Shimura varieties
of Hodge type, can be reduced to this. However, in general, it requires a com-
pletely different set of ideas. A relatively soft proof for the general case is due
to Faltings [F2].
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Chapter 7

Siegel modular varieties of
small genus

7.1 Genus 2 curves and abelian surfaces

The Siegel upper half plane H2 is an open subset of the space of 2×2 symmetric
matrices. It follows that this, and therefore A2 is three dimensional. Following
Igusa [I1, I2], we will be able give a fairly explicit description of this space.
First, we need the following basic result due to Weil [W, Satz 2].

Theorem 7.1.1. A two dimensional principally polarized variety is isomorphic
to either a product of two elliptic curves, or the Jacobian of a smooth projective
genus 2 curve.

Before getting into the proof, we need to make a few general comments.
Recall that a principally polarized abelian variety is isomorphic to A = Cg/Zg+
ΩZg for some Ω ∈ Hg. Associated to Ω, is the Riemann theta function θ(z) on
Cg. Since this is quasiperiodic, the zero set of θ gives a well defined effective
divisor Θ on A. This is the geometric “incarnation” of the theta function. We
have three facts, whose proofs can be found in [BL, MAV]:

1. Θ is ample.

2. dimH0(OA(Θ)) = 1.

3. Hi(OA(Θ)) = 0 for i > 0

We should point out that 2. depends on the fact that our polarization is
principal. 3. is really just a special case of Kodaira’s vanishing theorem, but
the case of abelian varieties is a lot easier. Let us now return to the case at
hand, where g = 2. Recall that we have an intersection pairing for divisors on
a surface, so in particular on A. The proof theorem 7.1.1 can be broken down
into a series of lemmas.
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Lemma 7.1.2. Suppose that g = 2, then Θ2 = 2.

Proof. Combining the above the above facts with Riemann-Roch 3.4.3 yields

1 = χ(OA(Θ)) =
1

2
Θ2

Lemma 7.1.3. If C ⊂ A is an irreducible curve, C2 ≥ 0.

Proof. We use the fact that C2 = C ·C ′ for any curve C ′ algebraically equivalent
to C. See [H, p 367] for an explanation of algebraic equivalence, and for the fact
just stated. If C ′ is a translate of C by a nonzero element of A, then it follows
that C2 = C · C ′. On the other hand, C · C ′ ≥ 0 by the formula (3.3).

Lemma 7.1.4. If C1, C2 ⊂ A are two irreducible curves with C1 an elliptic
curve, then either they are algebraically equivalent or C1 · C2 > 0.

Proof. The quotient A/C1 has the structure of an elliptic curve, and the projec-
tion π : A→ A/C1 is holomorphic. The image of C2 under the π is either a point
or all of A/C1. In the first case, C2 is fibre of π, so it is algebraically equivalent
to C1. In the second case, C1 and C2 must intersect, so C1 · C2 > 0.

Lemma 7.1.5. Either Θ is a smooth curve of genus 2, or Θ = C1 + C2 where
Ci are elliptic curves and C1 · C2 = 1.

Proof. Let us suppose that Θ =
∑
Ci, where Ci are irreducible curves with

repetitions allowed. Then

2 = Θ2 =
∑

C2
i + 2

∑
Ci · Cj (7.1)

All the terms in the sums are nonnegative, so this puts strong constraints on
what we can have. Either we have

(a) a single curve Θ = C = C1 with C2 = 2,

(b) we have two curves satisfying C2
1 = C2

2 = 0 and C1 · C2 = 1,

(c) or more than two curves.

The rest of the proof will hinge on the adjunction formula [H, p 361, p 366]
that if C is a possibly singular curve with arithmetic genus h on a surface S,
then

2h− 2 = C · (K + C)

Applied to S = A, this says
2h− 2 = C2

Let us suppose we are case (a). So we have an curve C = Θ with C2 = 2.
Then C must have arithmetic genus 2. If it is smooth then it has genus 2. Now
suppose that C is singular. Let C̃ → C denote the normalization. The genus h̃
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is known to be strictly smaller than the arithmetic genus 2. So either h̃ = 0 or
1. In the first case, we would get a nonconstant map from P1 to A, which would
lift to a nonconstant map from P1 → C2. This would contradict Liouville’s
theorem. In the second case, C̃ → A is the a homomorphism up to translation
by [BL, prop 1.2.1]. This would mean that C is nonsingular, contrary to what
we assumed.

In case (b), one of curves, say C1 has C2
1 = 0, otherwise (7.1) will fail. The

adjunction formula, shows that C1 has arithmetic genus 1. Arguing as above,
one sees that C1 is nonsingular, and therefore an elliptic curve. By the previous
lemma, either C1 and C2 are algebraically equivalent, or C1 · C2 > 0. If Ci are
equivalent, then (C1 +C2)2 = 0 which contradicts (7.1). So C1 ·C2 > 0. In this
case, we must have C1 · C2 = 1 and C2

2 = 0. Therefore C2 is also an elliptic
curve.

We claim that the final case (c) cannot occur. For simplicity, let’s assume
we have exactly three curves Ci. As above, we can assume C2

1 = 0 and that it is
elliptic, and either C1, C2 are equivalent, or that C1 · C2 = 1. In the first case,
Θ = 2C1 + C3 (up to algebraic equivalence). Then Θ2 would be either 0 or at
least 4, but this contradicts (7.1). So we can conclude that C1 ·C2 = 1. But by
the same argument, we must also have C1 · C3 = 1. So that Θ2 ≥ 4, which is
again a contradiction.

Lemma 7.1.6. If Θ = C1 +C2, where Ci are elliptic curves satisfying C1 ·C2 =
1, then A is isomorphic to a product of elliptic curves.

Proof. By [H, chap V, lemma 1.3], deg Θ|C1
= C1 · (C1 + C2). The adjunction

formula implies that C2
1 = 0, so deg Θ|C1 = 1. This means that Θ restricts to

a principal polarization on C1. Now use remark 5.2.5. (With a bit more work,
we can see that A ∼= C1 × C2.)

The Jacobian of a curve can be generalized as follows [GH, p 331]. Given a
smooth projective variety X, the Albanese is the quotient

Alb(X) =
H0(X,Ω1

X)∗

H1(X,Z)

It is in fact an abelian variety. Furthermore, given the Abel-Jacobi can be
defined exactly as before to give a holomorphic map

AJ : X → Alb(X)

with AJ(x0) = 0. It is not difficult to show that (Alb(X), AJ) is universal way
to map X into an abelian variety. It is easy to see that the construction is
functorial in the sense that a holomorphic f : X → Y induces a homomorphism
Alb(X) → Alb(Y ), and furthermore that if f∗ : H1(X,Z) → H1(Y,Z) is an
isomorphism, then so is the map on Albaneses.

Lemma 7.1.7. If Θ = C is a nonsingular genus two curve, then A ∼= J(C).
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Proof. The Lefschetz hyperplane theorem [Ml] implies that the natural map
H1(C,Z)→ H1(A,Z) is surjective. It must therefore be an isomorphism because
they are both free of the same rank. So by the above remarks, we have an
isomorphism

J(C) = Alb(C) ∼= Alb(A) ∼= A

7.2 Explicit models for A2

Let us start by describing genus two curves. Given a degree 6 polynomial f(x),
with distinct roots, the smooth projective curve determined by

z2 = f(x)

has genus 2. This follows from the Riemann-Hurwitz formula. Conversely, any
genus 2 can be realized this way (see for example [H, p 304]), but the choice of
f is far from unique. The nonuniqueness can be understood. First replace f by
the homogenous polynomial F (x, y), then SL2(C) acts on the space V of such

polynomials through the standard action on

(
x
y

)
. We are interested in invariant

polynomials V → C of even degree. These form a ring whose generators were
known since the 19th century by Clebsch and Bolza. To describe them, let us
factor

f(x) = u0x
6 + u1x

5 + . . . u6 = u0

∏
(x− ri)

or equivalently

F (x, y) = u0x
6 + u1x

5y + . . . u6y
6 =

∏
(pix− qiy)

The standard action of SL2(C) on the

(
pi
qi

)
is compatible with the action on

F . The expressions

Rij = det

(
pi pj
qi qj

)2

are clearly invariant under SL2(C). We also introduce

A(u) = R12R34R56 +
∑

σ∈S6−{1}

Rσ(1)σ(2)Rσ(3)σ(4)Rσ(5)σ(6)

B(u) = R12R23R31R45R56R64 + . . .

C(u) = R12R23R31R45R56R64R14R25R36 + . . .

D(u) =
∏
i<j

Rij

where the last two sums are symmetrized in the same way. Note that by the
theorem on elementary symmetric functions, A,B,C,D are polynomials in the
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u’s. These are also invariant, because the expressions Rij are invariant. The
expressions A(u), B(u), C(u), D(u) generate the ring of invariants. Note that

D(u) = u10
0

∏
i<j

(ri − rj)2

is just the discriminant, so that D(u) 6= 0 if and only if f has distinct roots.
A genus 2 curve corresponds to a PGL2(C) orbit of the point [u] ∈ P(V ) with
D(u) 6= 0. This is determined by the ratios of the values of the fundamental
invariants. Here is the precise statement:

Theorem 7.2.1 (Igusa). The complement of the divisor D = 0 in the projective
variety ProjC[A,B,C,D] is the moduli space M2 of genus 2 curves. Further-
more, M2 is isomorphic to C3/µ5, where the group of 5th roots of unity µ5 acts
by (t1, t2, t3) 7→ (ζt1, ζ

2t2, ζ
3t3).

While the two descriptions of M2 may appear unconnected, he derived the
second from the first by an explicit set of transformations. Define new invariants
by

J2 =
1

8
A

J4 =
1

96
(4J2

2 −B)

J6 =
1

576
(8J3

2 − 160J2J4 − C)

J10 = 2−12D

Then Igusa [I1, I2] showed that the degree 0 part of the graded ring C[A,B,C,D±1] =
C[J2 . . . , J

±1
10 ] is isomorphic to C[t1, t2, t3]µ5 , via

Je12 Je24 Je36 J−e510 7→ te11 t
e2
2 t

e3
4

where
e1 + 2e2 + 3e3 = 5e5

We have an injective map H2 → H2 given by

(τ1, τ2) 7→
(
τ1 0
0 τ2

)
Let ∆ ⊂ A2 denote the image of H2. This is a divisor parameterizing products
of pairs of elliptic curves. From theorem 7.1.1, we see that the complement
consists of Jacobians of genus 2 curves. Given a curve, J(C) with its canonical
principal polarization, the curve can be recovered simply as the theta divisor Θ.
Therefore, we have proved:

Theorem 7.2.2. A2 contains a divisor ∆ parameterizing products of pairs of
elliptic curves. The complement of A2 −∆ ∼= M2.
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A Siegel modular form of weight k is a holomorphic function f on H2 which
transforms in the “expected way” under Sp4(Z):

f((αΩ + β)(γΩ + δ)−1) = det(γΩ + δ)kf(Ω),

(
α β
γ δ

)
∈ Sp4(Z)

One important class of examples are Eisenstein series, which are sums of the
form

Ek(Ω) =
∑

det(γΩ + δ)−k

where sum runs over suitable set of pairs of matrices (γ, δ). The sum of the
spaces of modular forms over all weights forms a graded algebra. As an ap-
plication of the last theorem, Igusa [I2] goes on to determine an explicit set of
generators and relations for this algebra. See also [G3, §9].

Theorem 7.2.3 (Igusa). The algebra of Siegel modular forms of even weight is
generated by the Eisenstein series E4, E6, E10 and E12.

Let us consider the moduli space A2,3 of abelian surfaces with level three
structure. There is an explicit birational model which can be described as
follows. Let σi denote the ith elementary symmetric polynomial in x0, . . . , x5.
Burkhardt’s quartic B is the variety in P5 defined by σ1 = σ4 = 0. Since
σ1 = 0 is linear, one of the variables can be eliminated so as to write B as a
quartic hypersurface in P4. This can be transformed to yield a more economical
representation

b(y0, . . . , y4) = y0(y3
0 + y3

1 + y3
2 + y3

3 + y3
4) + 3y1y2y3y4 = 0

[Hu, chap 5]. The variety B has 45 nodes (isolated singularities analytically
isomorphic to x2

1 + . . . x2
4 = 0) but no other singularities. Let B̃ be resolution

of singularities of B given by the blow up of B at the nodes. The following fact
was known in some form by Burkhardt in the 19th century (see [HW, p 3270]
for the history). A modern proof can be found in [G1].

Theorem 7.2.4. There exists a birational map A2,3 → B given by an explicit

set of Siegel modular forms. This extends to an open immersion A2,3 ↪→ B̃.

Finally, to relate this to what we did earlier, recall that Hilbert modular
surfaces are moduli spaces of abelian surfaces with multiplication by a real
quadratic field. Therefore they map to A2, and to A2,n under appropriate
conditions. We can explicitly identify one of these surfaces using the previous
model.

Theorem 7.2.5 (Van der Geer-Hirzebruch). The image of the Hilbert modular
surface in B corresponding to Q(

√
5) and the level 3 principal Hilbert modular

group is given by σ1 = σ2 = σ4 = 0.

Proof. [G1].
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7.3 Compactification of A2

The spaces Ag are noncompact. Fortunately, there is a natural compactification
A∗g given by Baily-Borel [BB]. In this case, the basic ideas go back to Satake
[Sa], so it also called the Satake compactification. To describe it in more explicit
terms, it is convenient to replace Hg by

Dg = {Z ∈Matg×g(C) | ZT = Z, I − ZZ̄ pos. def.}

There is a holomorphic isomorphism Hg
∼→ Dg given by the Cayley transform

Ω 7→ (Ω− iI)(Ω + iI)−1

Dg is a bounded domain in Cg2 . The group Sp2g(R) will act on Dg, and on its
closure via the previous isomorphism. For simplicity, let us now assume g = 2.
Then

{I}, {
(
τ 0
0 1

)
| τ ∈ D1} ⊂ ∂D2

Let D∗2 be the union of D2, the above sets, and their translates under the group
Sp2g(Q).

Theorem 7.3.1 (Satake). There is a Hausdorff topology on D∗2, extending the
usual one on D2, such that Sp4(Z) acts properly discontinuously, and such that
A∗2 = Sp4(Z)\D∗2 is compact. As a set, we can decompose A∗2 as a disjoint union

A∗2 = A2 ∪A1 ∪A0

By work of Baily-Borel, A∗2 has the structure of a projective algebraic variety.
However, the singularities are quite bad. Igusa was able to construct a different
compactification Ā2, with mild singularities, by explicitly blowing up A∗2. This
turns out to coincide with the so called Deligne-Mumford compactification of
M2 [DM]. As a bonus, this gives a moduli interpretation for points at infinity. A
possibly reducible projective curve is called stable if it is reduced and connected,
with at worst nodal singularities, and with finite automorphism group. The last
condition is equivalent to requiring that any P1 component meets the other
components in at least 3 points.

Theorem 7.3.2 (Deligne-Mumford). The points of Ā2 correspond to stable
curves with arithmetic genus two.

We can write
Ā2 = M2 ∪∆1︸ ︷︷ ︸

A2

∪∆0

where ∆i are divisors.The general points of ∆1 correspond to unions of two
elliptic curves meeting transversally, and ∆0 to irreducible curves with a single
node. These constructions can be applied to varieties with level structure. In
particular Ā2,3 is the variety B̃, constructed previously, as the blow up of the
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Burkhardt quartic. Let M2,3 be the preimage of M2 in A2,3. Its image in B is
given by the nonvanishing of the Hessian

det

(
∂2b

∂yi∂yj

)
6= 0,

and the universal genus 2 curve over it is described by an explicit equation in
the recent paper of Bruin and Nasserden [BN].

7.4 Genus 3 curves

Let us take quick a look at the next case. An easy dimension count shows that
dimA3 = 6. The first step works as before:

Theorem 7.4.1 (Oort-Ueno). A principally polarized abelian three dimensional
variety is either the Jacobian of a genus 3 curve, a product of the Jacobian of a
genus 2 curve and an elliptic curve, or a product of three elliptic curves.

Proof. [OU].

The products are contained in the image of H2×H, and this can be seen to be
a proper Zariski closed set of A3. Therefore the complement M3, parameterizing
Jacobians of genus 3 curves, is a nonempty Zariski open (and therefore dense)
subset of A3. We have the following important fact.

Theorem 7.4.2 (Torelli). If X is a smooth projective curve, (J(X),Θ) deter-
mines X up to isomorphism.

Proof. [GH, p 359].

Corollary 7.4.3. M3 can identified with the set of isomorphism classes of genus
3 curves.

So we now focus on genus 3 curves. Our goal will be to give a direct con-
struction of a part of M3 as an algebraic variety. Suppose that X is a genus 3
curve. Choose a basis ω0, ω1, ω2 of the space holomorphic 1-forms. Then we get
the so called canonical map X → P2 given by x 7→ [ω0(x), ω1(x), ω2(x)], roughly
speaking.

Proposition 7.4.4. The canonical map is either a degree two map onto a conic,
or an isomorphism to a quartic in P2. Any nonsingular quartic in P2 arises this
way.

Proof. [H, pp 341-342].

Both cases are possible, but the second is typical in the sense that it holds
on an open dense subset Mo

3 ⊂M3 of the moduli space. Our goal is to construct
Mo

3 from first principles. Let us first describe the space of nonsingular quartic
curves. A homogeneous quartic polynomial f(x, y, z) = u0x

4 + . . . u14z
4 has
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15 coefficients. Thus it forms a 15 dimensional vector space V . The space of
quartics curves is parameterized by P14 = P(V ). Using basic algebraic geometry,
we can find a polynomial D(u), called the discriminant, such that D(u) = 0 if
and only if V (f) is a singular curve [Mk, p 170]. Therefore the affine variety Q =
P14 − V (D) parameterizes nonsingular quartics. We have a map π : Q → Mo

3 ,
but this is not a bijection. An element of Q is a genus 3 curve plus an embedding
into the plane. The map π forgets the embedding. We note that GL3(C) acts on
the space of polynomials V , and so it induces an action of PGL3(C) on P14. The
set Q is invariant under this action. Two points correspond to isomorphic curves
if and only if they lie on the same orbit correspond. Thus π is the quotient map.
We want to show that Mo

3 = Q/PGL3(C) is an algebraic variety. The name
of the game is geometric invariant theory, which was invent by Mumford [GIT]
precisely for the purpose of constructing moduli spaces. Here is the general
result in the form that we need:

Theorem 7.4.5 (Hilbert, Mumford, Nagata). Suppose that G is a reductive
linear algebraic group acting on an affine variety X = SpecR. Then the ring of
invariants RG is finitely generated; X//G := SpecRG is called the GIT quotient.
There is a surjective map of sets X/G→ X//G, which is a bijection if all points
of X have finite isotropy group.

Proof. See [Mk, pp 135-137, 165-167]

Note that SpecR is tacitly taken to be the maximal ideal spectrum. We
can take “reductive” to mean that there is a compact Zariski dense subgroup
K ⊂ G. For example, GLn(C) (resp. PGLn(C)) is reductive because K = Un
(resp. imUn) is such a subgroup. Without the reductivity hypothesis, RG can
fail to be finitely generated. The map X/G → X//G need not be bijective;
when it is, we say that X//G is the geometric quotient.

Now returning to our original problem, we can form the GIT quotient
Q//PGL3(C), and verify that it is a geometric quotient. This will construct
Mo

3 . We have to check that the isotropy groups are finite, but this follows
from [Mk, thm 5.23]; we could also argue that the isotropy group of a point
corresponding to a curve X is Aut(X), but this well known to be finite.

As a consequence of this construction, we find that

Proposition 7.4.6. M3 (and therefore) A3 is rationally connected, i.e. two
general points can be connected by a rational curve.

Proof. There is a dominant rational map from P14 to M3. Therefore two general
points can be connected by the image of a line.
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