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Abstract.  A new exponent characterizing the rounding of crystal facets is 
found by mapping a crystal surface onto the asymmetric six-vertex model (i.e. 
with external fields h and v) and using the Bethe ansatz to obtain appropriate 
expansions of the free energy close to criticality. Leading order exponents in δh, 
δv are determined along the whole phase boundary and in an arbitrary direction. 
A possible experimental verification of this result is discussed.
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1. Introduction

Crystals are believed to be entirely faceted at T  =  0, i.e. be polyhedral. Research—both 
theoretical as well as experiments—on these so-called quantum crystals has increased at 
an accelerated pace in the last few years. This is due to a miriad of prospective applica-
tions and experimental advances [1] which allows us to conduct experimental at those 
extreme temperatures. To name a few applications, quantum computing, high-pressure 
synthesis, nanoelectronics, and ferroelectrics whose Curie temperature is very close to 
absolute zero are among the most prominent ones [2, 3]. Moreover, since some of the 
most prototypical quantum crystals are rare-gases like He and Ne or molecular crystals 
as H2 or CH4, their availability make them particularly suited for experimental studies. 
As the temperature of a quantum crystal is raised, thermal fluctuations bring about a 
rounding of the edges where planes with dierent indices (hkl) meet. At the roughen-
ing transition temperature TR the remaining planar portion of (hkl) disappears entirely 
and the face becomes rough. Dierent facets may have dierent TR’s. This smoothing 
that occurs at the edge where two facets meet can be visualized in a simple geometrical 
way [4]: near the edge there is a curving of the interface (see figure 1) which varies as

z(x) ∼ (x− xc)
θ + higher-order terms (1)

where xc is the position of the edge and z measures height perpendicular to the facet. θ 
is the roughening exponent. Understanding how this rounding occurs is key to know-
ing how crystals’ properties change and any questions concerning the exact value of 
TR or exponents characterizing the macroscopic smoothing out of the edges cannot be 
addressed in a satisfactory way unless one has a microscopic model from which these 
quantities can be derived from first principles. However, from thermodynamics one 
can show that if a solid is in thermal equilibrium with its surrounding fluid, the free 
energy F (T ) is given by the same equation (up to an overall constant) which defines 
the geometrical form of the crystal. The implication of this result is straightforward: 
if one is able from first principles to calculate explicitly F (T ) and find its singularities, 
one is directly determining the singularities of the crystal shape, as the equations are 
the same. In other words, the singularities of the surface free energy gives us directly 
the roughening exponent θ . Before we present the main content of this paper, which 
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applies to both quantum as well as classical crystals, we briefly discuss the thermody-
namics of equilibrium crystal shapes (ECS) to better elucidate our results.

2. Thermodynamics of ECS

Along a first-order coexistence line the shape of a solid inclusion in equilibrium with its 
fluid is determined by the Gibbs–Curie constrained minimization condition: for a fixed 
volume V  of the inclusion, the equilibrium surface Ω = z(x, y) is such as to minimize 
the surface free energy

F (T ) =

∫

Ω

τ(�n,T )dΩ = minimum (2)

where the surface tension τ  depends on the orientation of Ω, �n = �∇z(x, y) and temper-
ature T. To solve the constrained variational problem to determine z(x, y) one intro-
duces a Lagrange multiplier 2ν

δ

{∫
[ f( p, q)− 2νz(x, y)]dxdy

}
= 0

p = ∂z
∂x, q =

∂z
∂y

 are the slopes of the surface and f( p, q,T ) = τ( p, q,T )
√
1 + p2 + q2  is 

the specific surface free energy projected onto the (x, y)-plane. The solution reads [5, 6]

νz = f(−νx,−νy) (3)
where the Legendre transformed potential f  is defined through [6]

f(ηx, ηy) = f( p, q)− pηx − qηy (4)

with ηx = ∂f
∂p

, ηy =
∂f
∂q

 the surface tilting fields conjugate to the slope variables p  and q. 

Thus the determination of f  yields the equilibrium surface z(x, y) directly, up to some 

edge

x
cx

z

transition region

planar crystal facet

curved facet

Figure 1. The profile of the smooth edge of an ideal crystal facet in the transition 
region where it becomes rounded. Based on [4].
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overall irrelevant constant. The main question however is how much of the physics can 
be captured by this description.

3. The free energy of the six-vertex model and ECS

Since both the free energy and the ECS of a crystal are given by the same mathematica 
formula equation (3), it is clear that questions concerning the exact value of TR or expo-
nents characterizing the macroscopic smoothing out of the edges cannot be addressed in 
a satisfactory way unless one has a microscopic model from which the surface tension τ  
can be derived from first principles. This problem has been tackled with success by sev-
eral authorseq mainly by using a connection between the theory of equilibrium shapes 
and two-dimensional lattice models, with the asymmetric six-vertex model playing a 
major role [7–10]. This system of interacting dipoles on a lattice is the natural exten-
sion of the symmetric problem through the inclusion of external fields h and v [11]. It 
is a classical paradigm of models soluble through the Bethe ansatz and an exact expres-
sion for its free energy has been known for many years [12]. Originally introduced in 
the context of equilibrium crystal shape problems (ECS) to describe the (0 0 1) facet of 
a bcc crystal [7], it was later extended to cover other facets on dierent lattices as well. 
In this way very comprehensive results have been obtained regarding the form of the 
equilibrium surface as well as its thermal evolution [9]. In particular there is a region 
in the (h, v) plane bounded by a curve Γ and containing the origin (h = 0, v = 0), which 
defines the loci of points where the free-energy retains its zero-field value [12]. This 
implies that z is a constant over an entire region of the parameter space. Beyond Γ the 
free energy changes continuously as a function of the fields. Appropriate expansions of 
the surface free energy around Γ show a leading order exponent for the scaling of z(x, y) 
as one approaches the boundary of the (1 1 0) fcc facet along the y   =  0 direction [9]

z ∼ (x− xc)
3
2 +O(x− xc)

2. (5)

This result has been confirmed experimentally [4, 13]. However, even though a great 
deal has been learned from exact analytical methods, their handling is no trivial matter 
and previous results were somewhat limited in their scope by rather involved technical 
diculties. In spite of the fact that it had already been conjectured that (5) should hold 
on the entire facet boundary a proof of this result still eluded us [9]. In this letter we 
give such a proof based on the expansion of the free energy of the asymmetric six-vertex 
model via the Bethe ansatz, introduced in [14, 15] as a generalization of previous meth-

ods [10, 11]. The main results can be summarized as follows: the exponent 3
2
 dominates 

the rounding in all directions but the tangential one, in which case a new exponent 3 
dominates. These results hold for the whole boundary.

For the sake of clarity, we consider one particular geometry, namely that of the 
(1 1 0) facet of an fcc lattice4. One may associate an energy to the surface arising from 
the cleavage of an infinite ideal crystal through the plane (hkl) based solely on the num-
ber and type of bonds broken per primitive cell. This is the simplest model possible and 
yet one which allows an exact handling of the equations that follow. Consider an fcc 

4 The results here presented can be easily extended to other geometries.
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lattice (figure 1) with energies  −J1 and  −J2 assigned to nearest—and next-to-nearest 
neighbor bonds respectively (J1 > J2 > 0). The T  =  0 surface tension reads [16]

τ(�nhkl) =
�nhkl

V pc|�nhkl|
·
(
J1[2 1 0] + J2[1 1 1]

)
 (6)

where �nhkl = hx̂+ jŷ + kẑ  is the vector normal to the plane (hkl) and V pc is the volume 
of the primitive fcc cell. Voids (excitations in the bulk) as well as overhangs (height 
dierences between neighboring columns of atoms bigger than some unit length) are 
strictly forbidden (solid-on-solid condition). The connection between the (1 1 0) facet 
and the vertex model is shown in figure 1.

From (6) one may associate the following energies to the vertices [9]

e1 = J2 +
A

η x

= J2 −H − V

e2 = J2 −
A

η x

= J2 +H + V

e3 = J1 −
A√
2
ηy = J1 −H + V

e4 = J1 +
A√
2
ηy = J1 +H − V

e5 = e6 = 0.

 

(7)

Here A = a2√
2
 is the area of a vertex (for a lattice constant a) and

H = −A

2

(
ηx −

ηy√
2

)

V = −A

2

(
ηx +

ηy√
2

)
.

 (8)

Note that this parametrization is slightly dierent than the one used in [9] but is con-
sistent with figure 1.

The free energy (4) follows straightforwardly [9]

f(�η,T ) = f(1 1 0) + f6−vertex(J1, J2,H,V ,T ). (9)
A configuration of alternating vertices 5 and 6 corresponds to the macroscopically 
smooth (1 1 0) plane. The twofold degeneracy (exchanging vertices 5 ↔ 6) represents 
the invariance of the crystal surface by the removal of the top layer of atoms. In terms 
of the original dipoles, this configuration of vertices has a zero net dipole moment 
(which trivially translates to the facet (1 1 0) having zero slope, being the reference 
plane). Regions of net dipole moment dierent from zero (nonzero slopes p , q) corre-
spond to tilts away from the reference plane. To find f  (or equivalently f ) of this system 
of interacting dipoles attached to the links of a square grid, we consider a lattice of 
N ×M sites and impose periodic boundary conditions on both directions. Define the 
row-to-row transfer matrix

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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T (u){α},{α′} =
∑
{β}

N∏
k=1

R
βkβk+1

αkα
′
k

(u) (10)

where {α} = α1, · · · ,αN are the arrows on a row of N vertical links (the α′’s are one 

row above) and βk (βk+1) is the arrow to the left (right) of the kth vertex. Rβkβk+1
αkα

′
k

 is 

the Boltzmann weight associated to a given configuration {αk,α
′
k, βk, βk+1} of the kth 

vertex (see figure 2). It is more conveniently described in terms of the so-called spectral 
parameter u and anisotropy γ, whose explicit relation to the original parameters reads

sinh u = e−J1/kBT

√
cosh2 γ − 1 (11)

cosh γ = − cosh
1

kBT
(J1 − J2) +

1

2
e

1
kBT

(J1+J2)
 (12)

and kB is the Boltzmann constant. We also incorporate the Boltzmann factors in new 
definitions for H and V , namely h = βH  and v = βV  (see figure 2).

The transfer matrix can be diagonalized exactly with the Bethe ansatz. Its eigen-
values read [12]

Λ(u, γ,h, v) = ev(N−2n)ehN
[
sinh(γ − u)

sinh γ

]N n∏
j=1

sinh(γ
2
+ u− iαj

2
)

sinh(γ
2
− u+

iαj

2
)

+ ev(N−2n)e−hN

[
sinh u

sinh γ

]N n∏
j=1

sinh(−3γ
2

+ u− iαj

2
)

sinh(γ
2
− u+

iαj

2
)

 

(13)

where the αj are the roots of the Bethe ansatz equations
[
sinh(γ

2
+ iαk

2
)

sinh(γ
2
− iαk

2
)

]N
= (−1)n+1e2hN

n∏
l=1

sinh(γ + i
2
(αk − αl))

sinh(γ − i
2
(αk − αl))

k = 1, 2, · · · ,n (14)

n represents the number of arrows in a row of N vertical links which are reversed with 
respect to the reference ferroelectric state |↑↑ · · · ↑〉.

The specific free energy is given by f = − limN ,M→inf
kBT
NM

lnZ where Z = Tr(TM) is 
the partition function. In the thermodynamic limit this expression is dominated by the 
largest eigenvalue Λ0 of T and and the free energy reduces to

f(u, γ,h, v) = − lim
N→∞

kBT
ln Λ0(u, γ,h, v)

N
.

At this point it is interesting to discuss some already known facts about the physics of 
the asymmetric six-vertex model before solving the Bethe ansatz equations explicitly. 
The phase diagram and the nature of the phase transitions are well understood when 
h = v = 0 (symmetric six-vertex), or when h  =  0 and v �= 0 [11].

The T  =  0 phase diagram for (h, v) �= 0 is trivial [12]. In this case the ground state 
wanders, as a function of the external fields, through each one of the dierent regions 
composed exclusively of vertices of type 1, 2, ⋯, 5  +  6. The boundaries between each 
region are sharply defined. In figure 3 a plot of the free energy both in the (h, v)-plane 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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x

z

y

1 2

3
4

5

6

1

3

2

6
4

5

-

-

-

-

--

---

-

-

--

Figure 2. The fcc cell and vertices. On the top left the (1 1 0) plane is depicted (full 
circles). Atoms in the plane immediately above are represented by empty circles. 
Two such planes combined define the macroscopically smooth (1 1 0) crystal surface. 
Vertices (full lines, top right) are defined for each group of 4 atoms (two filled and 
two empty circles). In the middle, a particular configuration of 4 vertices is depicted, 
a—sign indicating an atomic vacancy. The exact correspondence between vertices 
and configurations of the crystal plane is shown in the bottom figure. Vertices 1 
through 4 represent tilts away from the 〈1 1 0〉 direction, and correspond locally to 
planes (1 1 1), (1 1 1), (1 0 0) and (0 1 0) respectively. An alternating configuration of 
vertices 5 and 6 correspond to the (1 1 0) surface.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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as well as in the (ηx, ηy)-plane are presented. The crystal facets to which each region 
corresponds are accordingly indicated [9].

As the temperature is raised, thermal excitations bring about a rounding of edges 
[7]. When T �= 0 (γ finite) the free energy f(h, v) remains constant as function of the 
field (‘flat phase’) in a region of the (h, v) plane containing h = v = 0 and bounded by 
a curve Γ. Beyond this, the field is suciently strong to destroy the antiferroelectric 
order of the system, but not strong enough to impose ferroelectric order, and an incom-
mensurate phase appears where the polarization (or surface slope), which is zero in the 
flat phase, changes continuously with the field. The spectrum of the transfer matrix is 
gapless with finite size corrections typical of the gaussian model [17]. The curve Γ has 
been investigated only at a few points [9, 11] and the nature of the phase transition was 
found to be of a Pokrovskii–Talapov type [18]. To study this curve in more detail, one 
has to solve the Bethe ansatz equations in their limiting form for arbitrary values of h, 
v and determine the free energy. This is a non trivial problem. A detailed exposition of 
the methods used to tackle (14) can be found in [10, 14, 15]. Here we point out only the 
main results which are of relevance to the questions addressed. Since the Boltzmann 
factor is inessential to the forecoming discussion, we drop it out of our analysis. The 
vertical polarization y  is defined through

y = lim
N→∞

2Sz

N
= lim

N→∞

(
1− 2n

N

)
. (15)

Inside the boundary curve Γ in the (h, v)-plane the polarization is constant at its y   =  0 
value; the free energy does not depend on the field and is given by [12]

f(u, γ,h, v) = −2
∞∑
n=1

e−2γn

n cosh γn
sinh(nu) sinhn(γ − u). (16)

The parametric equation (h(b), v(b)) of Γ is given by [10, 14]

h(b) = − b

2
−

∞∑
n=1

(−)n
sinhnb

n coshnγ (17)

and

v(b) =
γ

2
− |γ − 2u− b|

2
+

∞∑
n=1

(−)n

n

sinh[n(γ − |γ − 2u− b|)]
coshnγ

− γ � b � γ.

 (18)
These equations reproduce only half of the curve Γ. The other half can be recovered 
from the symmetry f(−h,−v) = f(h, v). Figure 4 depicts Γ in the (h, v)-plane along 
with the same plot in the (ηx, ηy)-plane (the latter being the boundaries of the (1 1 0) 

Figure 3. The vertices and their corresponding Boltzmann weights.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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h

v

A

B1

2

3

4

5 , 6

ηxA
~

ηyA
~

C

D
E

(110)

(100)

(010)

(111)

(111)
_

Figure 4. T  =  0 view of the free energy in the (h, v)—and (ηx, ηy)-plane. The values 

of the parameters are A = J1−J2
2

, B = J1+J2
2

, C  =  J1, D  =  J2 and E =
√
2(J1 − J2); 

Ã is the area of a vertex.

ηxA
~

ηyA
~

(110)

h

v

Figure 5. Parametric plot of Γ for cosh γ = 21 and spectral parameter u = 1
2
 in the 

(h, v)—and (ηx, ηy)-plane respectively. The latter corresponds to the boundaries 
of the (1 1 0) fcc facet. The points (hc, vc) (lower half-plane) and (−hc,−vc) (upper 
half-plane) are singled out.
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facet) obtained numerically for cosh γ = 21, u  =  0.5 (non zero, finite temperature, see 
figure 5). Two points, (hc, vc) and (−hc,−vc) are singled out: the reason for this is 
explained in what follows.

It is believed [7, 9, 10] that the free energy singularity should be governed by a 

universal exponent 3
2
. A calculation performed for ηy = 0 gives [9]

f ∼ f0 + constant× (ηx − ηcritx )3/2 +O(δη2x).

From this result, it follows straightforwardly that

z = z0 + constant× (x− x0)
3/2.

An earlier result also support this observation, the direction of approach being however 
tilted relative to the normal of the surface [11]. It remains however to be proven that 
such results apply irrespective of the direction of approach and for the whole facet 
boundary. In order to prove this, one has to perform expansions on the free energy 
by means of an extension of previous techniques so as to allow an arbitrary angle 
of approach [14, 15]. Consider first the points (hc, vc). Here the equations simplify 
significantly and the increments δh, δv are perpendicular and tangential to the bound-
ary, respectively. One obtains, when approaching Γ from the incommensurate phase

f(u, γ,hc + δh, vc) = f(u, γ,hc, vc)− 2c2

(
2

c1
δh

)3/2

f(u, γ,hc, vc + δv) = f(u, γ,hc, vc)−
2

c22

(
c1
6π

)3

|δv|3

where c1 and c2 are functions of γ and u only. These results are not related to the 
unique geometrical character of the points. They hold over the whole boundary curve 
and can be expressed using the parametric equation of Γ, (h(b), v(b)) given by equa-
tions (17) and (18). We introduce the following notation [15]

vt(b) =
d

db
v(b) ht(b) =

d

db
h(b)

v1(b) =
d

db
vt(b) h1(b) =

d

db
ht(b)

∆ = vth1 − htv1

 (19)

and approach the curve Γ from the outside along straight lines h = h(b) + δh, 
v = v(b) + δv where δv = kδh and k fixes a slope not tangential to Γ. The free energy 
singularity reads in this case [15]

δf(δh) = (
ht

∆
)1/2

ht

3π
[2(k − vt

ht

)δh]3/2. (20)

These results clearly show that the exponent 3/2 is obtained for all directions except 
the tangential one, that is when δv = vt

ht
δh. Here the singularity is

δf(δh) =

{
c+δh

3 if δh > 0

c−δh
3 if δh < 0 (21)

where c+ �= c− are constants depending on the parameter b of the curve.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The result of our long calculation is that one has two critical exponents θ1 = 3/2 corre-
sponding to the rounding o of a crystal facet when the facet boundary is approached 
in all other directions except the tangential one and θ2 = 3 if the facet boundary is 
approached tangentially. Experiments on small Pb-crystals [4] which looked for θ1 
have found θ1 = 1.60± 0.15 whereas experiments on large He4-crystals [13] have found 
θ1 = 1.55± 0.06 confirming the theoretical predictions. More recent results on Pb were 
presented in [19]. According to Babkin [20] and Henrich [21] measurements to put in 
evidence the second critical exponent θ2 are feasible. An open problem common to the 
measurements in both exponents is the eect of gravity. These eects have been dis-
cussed in [22] and more extensively in the reviews [23–25].
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