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Observability of a sharp Majorana transition in a few-body model
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We propose experimentally observable signatures of topological Majorana quasiparticles in the few-body
limit of the interacting cold-atom model of Iemini et al. [F. Iemini, L. Mazza, L. Fallani, P. Zoller, R. Fazio,
and M. Dalmonte, Phys. Rev. Lett. 118, 200404 (2017)]. In this limit, the total on-site density and single-body
correlations change smoothly with the model parameters, while the calculated mutual information of opposite
ends of the lattice indicates a sharp transition of the system to a topological ground state. Furthermore, local-
density and -parity measurements provide an experimentally viable path for observing the ground-state Majorana
quasiparticles in ultracold atoms. Our results lay out a promising future for utilizing few-body systems as a
testing ground for Majorana physics.
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I. INTRODUCTION

The cold-atom community has made remarkable strides
in engineering quantum systems to exhibit many-body phe-
nomena that were formerly limited to condensed-matter
systems. Particularly for lattice systems exhibiting topolog-
ical many-body phenomena, recent advances in engineered
Hamiltonians for cold atoms have enabled large degrees of
control over many-body systems for studying these topo-
logical phases of matter [1]. This degree of control of
experimental systems extends to the ability to model a particu-
lar Hamiltonian and control the interactions of its constituents
(see [2] and the hundreds of references therein).

Within the many-body community, there has been a wide
spread search for Majorana edge states, to find fermionic
quasiparticles the fermionic creation or annihilation operators
of which exist as sums of two spatially separated Majorana
operators, each commuting with the Hamiltonian [3]. In Ki-
taev’s landmark paper [8], he demonstrated that a simple
mean-field model of superconductivity can exhibit these edge-
mode Majoranas as quasiparticles in a quantum wire with zero
excitation energy in the thermodynamic limit. For finite lat-
tices, an energy gap proportional to e−L, where L is the lattice
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length, is expected for spatially separated Majorana quasipar-
ticles. While there is no short supply of theoretical models
of number-conserving systems that support Majorana edge
modes [9–24], whether synthetic degrees of freedom truly
allow such quasiparticles to exist in a quasi-two-dimensional
lattice has yet to be seen in experiments.

Interactions play a crucial role in determining the topo-
logical phase of a system of fermions [25]. In recent years,
interacting double-wire models have been quite fruitful for
exploring number-conserving Majorana systems [11–17]. In
[9], the double-wire models of [11–13] were translated into
a realistic cold-atom setting with neutral atoms. At roughly
the same time, Zhou et al. proposed nearly the same model
and studied the phase diagram in the many-body limit using
a complementary set of parameters [10]. Several of the sig-
natures seen in [9] survive in the few-body limit and can be
shown to emerge as the two-body interaction strength via spin
exchange is increased relative to the optical lattice tunneling
rate, allowing the study of the topological phase transition into
a ground state with Majorana quasiparticles.

In this paper, we use similar parameter values as [9] to
verify the few-body limit and examine additional properties of
the model, including signatures of the topological phase using
quantum mutual information to indicate nonlocal physics on
opposite ends of a one-dimensional chain. Guided by the
transition seen in the mutual information, we then propose ex-
perimental signatures to contrast the topologically trivial and
nontrivial phases and calculate timescales to study the tran-
sition. We conclude with an investigation of the consistency
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of the ground state with finite-energy Majorana quasiparticles
that are gapped due to the finite-size effects.

II. IEMINI ET AL.’s INTERACTING MODEL

The model of Iemini et al. has a basis that is composed of
four hyperfine states of a fermionic alkaline-earth-like atom
[26], physically labeled according to an orbital angular mo-
mentum quantum number (labeled p = ±) and pseudospin
(labeled α =↑,↓), with couplings between two effective
nuclear spin states and two orbital spin states provided by in-
teractions with the photon field of the optical lattice as well as
two-body interactions between the atoms [27–29]. The Iemini
Hamiltonian is constructed from a sum of a nearest-neighbor
tunneling, onsite potentials, synthetic spin-orbit coupling, and
a two-body spin-exchange interaction:

HI =
∑

j

HT, j + HU, j + HSO, j + HW, j .

The single site tunneling terms are given by

HT, j =
∑
p,α

T (a†
α,p, j+1aα,p, j + H.c.).

The local on-site diagonal interaction is composed of terms

HU, j = U+n↑,+1, jn↓,+, j + U−n↓,−, jn↑,−, j

+U
∑
α,β

(nα,−, jnβ,+, j ).

In recent years, spin-orbit coupling has become feasible using
synthetic magnetic fields [30–32]. The spin-orbit terms may
be written as

HSO, j = (b + αR)(a†
↑,+, ja↓,−, j+1 + a†

↑,−, ja↓,+, j+1 + H.c.)

+ (b − αR)(a†
↑,+, j+1a↓,−, j + a†

↑,−, j+1a↓,+, j + H.c.),

where the time-reversal symmetry-breaking coefficients b ±
αR describe the sum and difference of an effective Zeeman-
splitting term b that is spatially uniform in this approximation
and a Rashba velocity αR, providing an analogous effect to an
external magnetic field. The final term, a two-body scattering
term related to spin exchange [33,34], is given by

HW, j = W (a†
↑,+, ja

†
↓,−, ja↓,+, ja↑,−, j + H.c.).

With these interactions, the Hamiltonian may be written in
a two-block-diagonal form according to a suitable parity op-
erator. We propose a slightly different parity operator from the
original paper [9], the definition of which needs modification
for odd total particle number. In analogy with [12], a study of
a double-wire model, fermions of species (↑,+) and (↓,−)
at site j are analogous to adjacent-site single-species fermions
in the upper wire of the double-wire model. With this, we may
define two reasonable parity measurements, P+ and P−:

P+ =
( ∑

j

n↑,+, j + n↓,−, j

)
mod 2, (1)

P− =
( ∑

j

n↑,−, j + n↓,+, j

)
mod 2. (2)

Importantly, these two definitions are equivalent for even total
particle number, but interchange the meaning of even and odd
parity of [9]. For odd lattice fillings, P+ and P− define even
and odd parities in the opposite manner. For this paper, we
use the definition P+.

The Hamiltonian has a chiral symmetry that leaves the
Hamiltonian invariant: a(†)

α,p, j �→ a(†)
−α,p,L− j . For even num-

bered fillings, this symmetry commutes with the degenerate
parity operators; however, in lattices with odd total occupa-
tion number, the chiral transformation exchanges the parity
sector of a state for every eigenstate of the parity operator.
Thus, for all parity eigenstates with odd total particle number,
the energy spectrum is at least doubly degenerate due to the
chiral symmetry relationship between states in opposite parity
sectors. For states with even total particle number, the Z2 sym-
metry from the generalized notion of parity commutes with
the chiral transformation, and the states are not identically
degenerate. When U±,U = 0, there is an additional symme-
try a(†)

α,p, j �→ a(†)
−α,−p, j that simultaneously commutes with the

chiral transformation as well as the parity operator, and so
does not place any additional constraints on the spectrum
irrespective of the particle number.

For the remainder of this paper, we set T = −1 and consis-
tently use W/T in figures to emphasize that T determines the
energy scale used, and further set (U±,U, b + αR, b − αR) =
(0, 0, 8, 0) to utilize similar parameters as [9] with L = 7 = N
in the even-parity sector. We will study the effect of diagonal
interactions (U,U± �= 0) and weaker time-reversal symmetry
breaking (αR �= ±b) in future work, but have included those
terms for completeness of the model. W/T is varied to study
the transition from the nontopological regime with no edge
modes to the topological regime with edge-state physics.

In the few-body limit, the spectrum is discretized and the
transition regime is spread out over a large set of parameter
values as a finite-size effect. From Fig. 1, we can see that in the
strong-coupling limit of the few-body regime the ground-state
manifold approaches being truly degenerate, while the next
nearly degenerate set of energies crosses very slowly with a
tuning of W/T .

Our few-body calculations show strong qualitative agree-
ment with [9]. For W/T = 16, the ground-state single-species
correlators 〈a†

↑,+,1a↑,−, j〉, which measure the intraspecies cor-
relation of site 1 with site j, initially decay, then rebound
exponentially [see Fig. 2(b)]. On the other hand, the non-
topological low-energy states decay exponentially with no
rebounding, as shown in Fig. 2(a) for W = 10T as well as the
nontopological excited states of Fig. 2(b). The single-species
Green functions indicate long-range correlations as W/T is
increased but do not change abruptly in the few-body limit,
making it difficult to use the single-species correlations as the
sole signature of the phase transition.

The edge-edge mutual information is a signature that
demonstrates the topological phase transition clearly in the
few-body limit. The mutual information of two quantum sys-
tems A,C is the relative von Neumann entropy between their
joint reduced density matrix and the tensor product of their in-
dividual reduced density matrices: I (A : C) = SA + SC − SAC ,
where SX is the von Neumann entropy of the state’s reduced
density matrix over region X [35,36]. In the case of a pure
state in a quantum system across regions A, B,C, we may
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FIG. 1. The lowest-energy eigenvalues of the even-parity sector,
shifted so that the center of the low-lying energies is approximately
zero by subtracting a cubic fit of the average of the first four energies.
A cubic fit is the lowest degree polynomial fit that gives an accurate
approximation to the mean low-energy spectrum as a function of
W/T when the problem was solved using exact diagonalization.
The fit Q3(W/T ) is given by 0.0016(W/T )3 − 0.1303(W/T )2 +
0.8999(W/T ) − 64.131. During the crossover from the nontopolog-
ical to the topological phase, a zoo of states is formed and we can
see the four lowest-energy states separate, with the ground state
becoming approximately (doubly) degenerate. We use the same color
scheme for all plots and focus on the four lowest-energy states as
these are the states that interact with the lowest band in the quasiadia-
batic few-body limit. Inset: There is an avoided crossing between the
lowest-energy state and the second excited state. When U = 0 = U±,
the Hamiltonian may be written in a four-block-diagonal basis, and
there is a nonavoided crossing with the first excited state, which
lies in another symmetry sector (but becomes coupled when on-site
interactions are included).

write this as I (A : C) = SA + SC − SB [37]. Figure 3 con-
tains a sample seven site lattice divided into regions A, B,C
for various sizes of the regions, with LA = 2 = LC given in
the drawing’s annotation. The mutual information displays a
sharp transition as W/T is increased when subsystems A and C
comprise one site each. For larger regions of A,C, the increase
of W/T does not cause as sharp of a change in the mutual in-

FIG. 2. Single-species correlators 〈a†
↑,+,1a↑,+, j〉 are shown

for the four lowest-energy states for (L, N, T,U, αR, b) =
(7, 7, −1, 0, 4, 4) (refer to Fig. 1 for the legend). (a) In the
trivial phase (W = 10T ), all low-energy states exhibit a staggered
decay with no rebounding of single-particle correlations. (b) In the
topological phase (W = 16T ) the degenerate ground-state manifold
exhibits exponential decay into the bulk and rebounds on the other
end of the chain while the trivial states exhibit correlations that do
not rebound. As W is increased in magnitude, the bulk continues to
lose correlation with the edges.

FIG. 3. Top: Sample lattice with division into three regions A, B,
and C. Bottom: Mutual information between the first and last sites
(LA = 1 = LC) for the four lowest-energy states as W/T is varied
(refer to Fig. 1 for the legend). The degenerate ground-state manifold
has topological properties after the transition region W/T ∈ [11, 14],
while the first-excited-state manifold has no edge-edge correlation
beyond a product state.

formation between subsystems A and C since the bulk (region
B) is providing most of the entanglement across the division
via short-ranged entanglement, which varies smoothly with
changes in parameters, as shown in Fig. 4. For the case of
N = 7 with no nonzero potential terms, the chiral symmetry
guarantees that the entanglement spectra in the center of the
lattice are identical in the even- and odd-parity ground states
(similar to [38]’s inversion symmetry analysis of a mean-field
model). Thus, the mutual information gives insight into the
interplay between the length scales of edge modes and short-
ranged bulk entanglement even in the presence of additional
symmetries that prevent the analysis from using the entangle-
ment spectra in opposite parity sectors.

III. EXPERIMENTAL SIGNATURES

While the mutual information provides a theoretical under-
standing of the nonlocal nature of the ground-state manifold
in the topological regime, it is not experimentally measurable
since it is nonlinear in the density matrix. Equally impor-
tant, although it provides a measure of topological physics
by integrating out the bulk center region of the lattice, the
edge-edge mutual information does not give direct insight into
any quasiparticle properties of the ground state aside from
nonlocal edge-edge entanglement.

In addition to the single-particle Green functions of
Figs. 2(a) and 2(b), we propose two additional experimental
signatures distinguishing the topological and nontopological
regimes of the model: the density expectation values across
the lattice and local-parity measurements.
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FIG. 4. Mutual information of the left and right edges for (a)
LA = 2 = LC and (b) LA = 3 = LC . As the widths of the edges
for the mutual information calculations are increased, one can see
the evolution towards bulk behavior as short-ranged entanglement
provides the majority of the entanglement between the two halves
with finite-size effects causing the cusplike features in the transition
region.

The density expectation values 〈nα,±, j〉 distinguish be-
tween topological and nontopological states when varying
W/T . Below the transition threshold (indicated by the change
in the mutual information), all four fermionic species have
nearly zero density at one end of the lattice or the other for all
low-energy eigenvectors (though only 〈n↑,+, j〉 is plotted here),
exemplified in Fig. 5(a) with W/T = 10. When the mutual
information indicates a topological ground state, the densities
at opposite ends have similar magnitudes, with the densities
of the ground-state manifold at W/T = 16 in Fig. 5(b) being
characteristic examples.

FIG. 5. (a) In the trivial regime of the model (W = 10T in this
plot), all low-energy states have very low densities at one edge of the
lattice for each particle species (refer to Fig. 1 for the legend). (b) In
the topological regime (W = 16T ), the densities of the topological
ground-state manifold have comparable values on both ends of the
lattice, while the nontopological excited states maintain near-zero
edge densities at one end of the lattice.

FIG. 6. Local ground-state parity measurements of the left-hand
side 〈P+,LA 〉 plotted for LA = 1, 2, 3 in the even-parity sector. With
just a single site, the local-parity measure shows a small but notice-
able transition, while the local parity of the first three sites provides
a very strong evidence of the phase transition.

A sharp few-body experimental signature of the proposed
Majorana mode is provided by the parity operator restricted
to the first LA sites on the left-hand side of the lattice: P+,LA =
(
∑

j=1...LA
n↑,+, j + n↓,−, j ) mod 2. Since two spatially sepa-

rated Majorana modes each locally break parity, but conserve
it globally, we may look at the expectation value of the
operator P+,LA while keeping LA < L/2. With only seven
sites, this signature provides evidence of edge parity breaking
while maintaining global parity. In the even-parity sector,
the parity expectations on the left- and right-hand sides of
any cut are identical (to cancel and give zero as the global
parity measurement). The even-parity ground state sharply
changes in its parity expectation value for the left-hand side,
as shown in Fig. 6, which plots 〈P+,LA〉 of the even-parity
ground-state for LA = 1, 2, 3. This sharp transition of the left-
hand side parity measurement while fixing the global parity
gives a sharp experimental signature of a topological mode
strongly consistent with Majorana quasiparticles in the ground
state.

The presence of an avoided crossing of the energy levels in
Fig. 1 as a function of the parameter W/T in the Hamiltonian
suggests a way to experimentally create the topological phase
possessing Majorana character, starting from the nontopolog-
ical phase. Specifically, begin by preparing the system in the
lowest-energy level to the left of the avoided crossing, i.e., at
W/T 
 13.9. Then by sweeping at a sufficiently slow ramp
to W/T � 13.9, the system will transition into the topologi-
cal Majorana phase with a controllable high probability. The
requisite ramp speed to stay in the lowest-energy level through
this avoided crossing can be estimated from Fig. 1 using the
Landau-Zener model [39]. For definiteness, we consider a sce-
nario where the tunneling term is fixed at T = 100 h Hz, while
W is swept through the value 13.9T at a linear temporal ramp
rate dW/dt . Then the Landau-Zener formula gives the proba-
bility to remain in the lower branch of the avoided crossing to
be P = 1 − exp(−2π�), where � = (�2/h̄)/(4|dE2/dW −
dE1/dW |dW/dt ). Our calculation of the critical value of the
ramp rate for which the adiabatic transition occurs with 50%
probability is (dW/dt )crit = 1360 hHz/s, i.e., � = (0.110 ×
1360 hHz/sec)/(dW/dt ). Thus a ramp speed of 136 hHz/s
keeps the system on the lower branch and produces the topo-
logical Majorana phase with 99.9% probability. For Yb, the
lifetime of the excited electronic states (≈102 s) is far longer
than the time to sweep through a change of W of 1000 hHz
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with the slow ramping rate of 136 hHz/s [30,31]. The long
lifetime along with the Landau-Zener analysis gives experi-
mentalists a wide range of control over the transition from the
nontopological phase to the topological Majorana phase.

IV. CONCLUSIONS

We have discussed the symmetries and corresponding
operators of the interacting model of [9] and proposed a dif-
ferent parity definition in analogy with [12]. Furthermore, we
have demonstrated the utility of mutual information as a way
to complement entanglement spectra for categorizing topo-
logical phase in the presence of additional symmetries. The
mutual information together with the local-parity measure-
ment in the ground state supports the conclusion of [9] that as
the two-body scattering is increased edge modes consistent
with Majorana quasiparticles appear in the ground state.

Future work will yield more insight into the characteristics
of the edge-state physics. Theoretically, further study of the
transition region will lead to estimates of the length scales
of the Majorana quasiparticles in the ground state as well as
stability under one-body on-site noise. The experimental sig-

natures proposed here focus on local-density measurements,
which are standard in ultracold-atom experimental groups,
and are accessible to groups studying these alkaline-earth-like
atoms [30–34,40–42]. In the few-body limit of only seven
sites and seven particles, our results suggest that there are
nontopological excited states gapped away from the degen-
erate Majorana-like topological ground-state manifold due to
finite-size effects.
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