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We define a stochastic lattice model for a fluctuating directed polymer in d � 2 dimensions. This model can be
alternatively interpreted as a fluctuating random path in two dimensions, or a one-dimensional asymmetric simple
exclusion process with d − 1 conserved species of particles. The deterministic large dynamics of the directed
polymer are shown to be given by a system of coupled Kardar-Parisi-Zhang (KPZ) equations and diffusion
equations. Using nonlinear fluctuating hydrodynamics and mode coupling theory we argue that stationary
fluctuations in any dimension d can only be of KPZ type or diffusive. The modes are pure in the sense that
there are only subleading couplings to other modes, thus excluding the occurrence of modified KPZ-fluctuations
or Lévy-type fluctuations, which are common for more than one conservation law. The mode-coupling matrices
are shown to satisfy the so-called trilinear condition.
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I. INTRODUCTION

The dynamics of one-dimensional many-body systems is
presently a topic of intense study. One of the main motivations
is to study anomalous transport phenomena, which arise in
different contexts and various physical scenarios even when
interactions are short-ranged. Specific topics of interest are
one-dimensional stochastic equations with local conservations
laws [in particular for interface dynamics in the universality
class of the one-dimensional noisy Kardar-Parisi-Zhang (KPZ)
equation] and stationary spatiotemporal fluctuations in driven
diffusion, or anharmonic chains or Hamiltonian fluid dynam-
ics; see, e.g., the collection of articles in Ref. [1] and in the first
issue of volume 160 of the Journal of Statistical Physics (2015)
for recent overviews. In the case of a single locally conserved
quantity, the long wave-length fluctuations of the conserved
field are generally either diffusive with dynamical exponent
z = 2 or in the KPZ universality class [2] with dynamical
exponent z = 3/2.

In this article, we will focus on coupled one-dimensional
stochastic equations with more than one conservation law.
They show a much richer behavior than the single KPZ
equation, depending on the details of the models. Fluctuations
of the conserved fields can be in a modified KPZ universality
class [3] or, more intriguingly, in a discrete family of Lévy
universality classes [4] where the dynamical exponents zi are
the Kepler ratios of neighboring Fibonacci numbers and the
universal scaling forms of the dynamical structure function
are zi-stable Lévy distributions. The first member in this
family is a mode with dynamical exponent z = 3/2 as in
KPZ, but Lévy scaling function which very recently was
proved rigorously for energy fluctuations in a harmonic chain
with energy-conserving noise [5]. The second member with
dynamical exponent z = 5/3 was first firmly established using
mode coupling theory for the heat mode in Hamiltonian
dynamics for a one-dimensional fluid [6]. Also the limiting
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value of the Kepler ratios, which is the famous golden mean,
can arise [3,4,7].

Here we address the nature of the dynamical structure
functions in a higher dimensional setting, viz. for the contour
fluctuations in a lattice model for a directed polymer in d � 2
dimensions, somewhat in the spirit of the space-continuous
polymer model of [8] for d = 3. Our lattice model can be
mapped to a fluctuating random path in two dimensions
and also to a one-dimensional exclusion process [9–12]
generalized to d − 1 species of particles. We use the latter
mapping, taking two different approaches to study the large-
scale dynamics and the spatiotemporal fluctuations in the
stationary state.

First, focusing on d = 3, a dynamical mean-field approach
for the particle densities leads to a system of two coupled
partial differential equations that each look like a Burgers
equation. By introducing a generalized height variable, these
equations become coupled KPZ equations. The couplings
depend on the rates of the original exclusion process. By
varying the rates, one can systematically study the different
universality classes. However, two of the entries in the coupling
matrices will always remain zero, regardless of the rates in the
underlying exchange process.

The second approach is based on nonlinear fluctuating
hydrodynamics, which has emerged as a widely applicable
and powerful tool for the study of stationary fluctuations of
the locally conserved quantities such as energy, momentum, or
particle densities [13]. From the exact current-density relation
we compute the mode-coupling matrices which allow us to
deduce the dynamical universality classes that can occur in
the model in any dimension d � 2. We find that only KPZ
modes and diffusive modes may occur and that these modes
have only subleading couplings between them, which excludes
also the occurrence of the modified KPZ universality class. We
point out that the mode coupling matrices satisfy the so-called
trilinear condition which is relevant for the Gaussian nature of
the invariant measure of the associated coarse-grained system
of coupled noisy KPZ-equations [14,15].

This paper is organized in the following way. We start by
defining in Sec. II the directed polymer model in any dimension
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d that is a generalization of the well-known correspondence
between the single–species asymmetric diffusion model and a
growing and fluctuating interface in d = 2. In Sec. III we focus
on d = 3 and first derive a system of two coupled nonlinear
partial differential equations for a generalized height function
from a coarse-graining of the model. Next we study fluctu-
ations via nonlinear fluctuating hydrodynamics. Section IV
contains a calculation of the mode-coupling coefficients for
an n-component particle exchange process, corresponding to
a directed polymer in d = n + 1 dimensions. Discussing the
case n = 2 in detail yields a direct comparison with the height
model results. In Sec. V we summarize our results and point
to some open problems.

II. DIRECTED POLYMER IN d DIMENSIONS,
GENERALIZED HEIGHT FUNCTION, AND THE

MULTI-SPECIES ASEP

There is a very nice and well-known mapping between the
one-dimensional single-species asymmetric simple exclusion
process (ASEP) and a growing and fluctuating interface on
a two-dimensional substrate [16,17]. The contour of this
interface can equally be interpreted as a model for a directed
polymer living on a square lattice in two dimensions. The
conformation of the polymer, or equivalently, the height
function of the interface, is given by a microstate of the ASEP.

Generalizing to multispecies simple exclusion processes
[18], it is natural to search for an analogous construction
in higher dimensions. We demonstrate that there is indeed
a natural way of defining a directed polymer model in
any dimension. This is achieved by identifying the directed
polymer with a directed path on a plane perpendicular to the
(1,1, . . . ,1)-direction of a hypercubic lattice and introducing
an associated generalized height function. Below we present
the details of this mapping and show that by deriving an
equation for the time evolution of the height variable one
obtains a set of coupled differential equations that describe
either diffusive or KPZ or mixed behavior. The same equations
can be derived from the corresponding multispecies simple
exclusion process and its master equation dynamics.

A. Details

Consider d species of particles with exclusion, i.e., at most
one particle per site, on a one-dimensional chain of L sites,
counting a “vacancy” as a species. Particles of different species
α and β randomly interchange their positions with rates gα,β ;
see Sec. (IV) for a precise definition of this multispecies
exclusion process. Then each configuration of the chain can
be mapped to a directed path on a d-dimensional hypercubic
lattice, which is later projected onto a plane perpendicular
to the (1,1, . . . ,1)-direction: As you step along the chain,
the corresponding steps of the path on the hypercube are
given by what species of particle you pass, with each species
corresponding to one of the d basis vectors of the hypercube
with unit length a. Thus, each step increases the height of
the corresponding segment of the directed polymer by a/

√
d

above its anchor point. By convention we take the anchor
point to be the origin �0 = (0,0, . . . ,0). We assume no external

potential so that in the stationary state each conformation of
the directed polymer is equally likely.

For a hypercube with unit lattice constant a = 1 the contour
length of the polymer is Ld. The endpoint of the polymer
after the L steps of the underlying particle configuration is at
height L/

√
d . Its position is determined by the (conserved)

number of particles of each species in the chain. In particular,
if the number Nα of particles is the same for each species
α, i.e., if Nα = L/d, then the endpoint of the polymer
has coordinates L/

√
d(1,1, . . . ,1). The projection of the

position of the polymer after k steps along the chain onto the
hyperplane perpendicular to the (1,1, . . . ,1)-direction defines
a generalized height variable, which is a d − 1-dimensional
vector.

B. Example in d = 3, leading to a path in d = 2

For definiteness we discuss in more detail the case d = 3,
where our generalized height will be shown as the position
of the path projected onto a plane perpendicular to the (111)
axis of the cube. This path will be in two dimensions. The
dynamics of the system is then represented by elementary
moves of this path, where one site along the path moves in
the only way that is determined by the constraints imposed
by the particle exchange dynamics of the exclusion process
with three conserved particle species and no vacant sites. No-
tice that since L is fixed by the dynamics, the particle exchange
dynamics correspond to only two genuine conservation laws.
This can be seen by identifying one species with vacant sites.
We consider periodic boundary conditions for the exclusion
process with an equal number of particles of each species
which corresponds to periodic boundary conditions for the
directed polymer.

To be concrete, we start from a two-species asymmetric
exclusion model on a ring with L sites where each site k is
either empty or occupied by at most one particle of type A

or B. For our purposes it is convenient to think of a vacancy
as a further species of particles, denoted by �. A microscopic
particle configuration is specified by an array of L symbols Xk

where Xk ∈ {�,A,B}, or, equivalently, by occupation numbers
nX

k = δX,Xk
, which are equal to 1 if the particle at site k is of

type X and zero otherwise. It defines a conformation of the
directed polymer as described above.

The Markovian stochastic dynamics consists of nearest-
neighbor particle exchanges Xi,Xi+1 → Xi+1,Xi as follows:

Transition Rate
AB → B A r1

B A → AB r2

A� → �A r3

�A → A� r4

B � → �B r5

�B → B � r6

(1)

To ensure equal equilibrium probabilities for all conformations
of the polymer (corresponding to the uniform measure for
particle configurations) we impose pairwise balance [19],
which yields

r1 + r4 + r5 = r2 + r3 + r6. (2)
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B
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FIG. 1. Projection of the position of the directed polymer onto
the plane perpendicular to the (1,1,1) direction (left) and directions
for the 2D height function (right).

The uniform distribution leads to a complete absence of
stationary correlations in the thermodynamic limit L → ∞.

The link with the height function and the two-dimensional
random path is established as follows. With each of the three
species (A, B, or vacancy �) we associate one of the three
canonical basis vectors �ei of the 3D cubic lattice. Thus, starting
from the anchor point of the polymer [say, the origin �0 =
(0,0,0)], the height along the (1,1,1) axis is k/

√
3, where k is

the lattice site of the one-dimensional chain of particles. The
particle configuration from site 1 to site k on the chain then
describes the position of the height vector �Hk = ∑k

j=1 �eXj

j in
the plane perpendicular to the (111) direction, reflecting the
position of the polymer in three dimensional space at height
k/

√
3.

The projection of the three basis vectors onto the plane
perpendicular to the (1,1,1) direction is shown in Fig. 1 (left).
This results in the following three normalized vectors:

�v� = 1√
6

⎛
⎝ 2

−1
−1

⎞
⎠, �vA = 1√

6

⎛
⎝−1

2
−1

⎞
⎠, �vB = 1√

6

⎛
⎝−1

−1
2

⎞
⎠.

Now we can pick basis vectors for the plane perpendicular to
the (1,1,1) direction, e.g.,

�b1 = 1√
6

⎛
⎝−1

−1
2

⎞
⎠, �b2 = 1√

2

⎛
⎝ 1

−1
0

⎞
⎠.

Expressing the vectors �vi ; i = �,A,B in terms of the two
basis vectors �b1 and �b2, they become the two-dimensional
unit vectors in the projection plane [see Fig. 1 (right)]:

�� =
(− 1

2√
3

2

)
, �A =

( − 1
2

−
√

3
2

)
, �B =

(
1
0

)
. (3)

The projected height vector at level k, which is the
generalized height function we are after, is then given by

�H⊥
k = �H⊥

0 +
k∑

j=1

(
n�

k
�� + nA

k
�A + nB

k
�B)

, (4)

where �H⊥
0 is the reference point (taken to be the origin in

the description above). This shows that the local occupation

x

hh

h

1 hh1

2 h2

x

FIG. 2. Two-dimensional random path on the honeycomb lattice
and diffusing particles. From the left picture to the right picture, the
black particle on lattice site 5 and the gray particle on lattice site 6
have interchanged places and the path has changed accordingly.

numbers give the (discrete) height gradient,

∇(111) �H⊥
k := �H⊥

k − �H⊥
k−1 = n�

k
�� + nA

k
�A + nB

k
�B, (5)

in (111)-direction. Fluctuations in the height vector are
described by nearest neighbor particle swaps as defined
above.

Correspondingly the surface path in the plane perpendicular
to the (111) direction becomes a planar random path on
a honeycomb lattice with unit lattice constant (Fig. 2). A
change in the path happens when two particles interchange
places.

III. COARSE-GRAINED DYNAMICS AND STATIONARY
SPATIOTEMPORAL FLUCTUATIONS

A. Coupled KPZ equations for the height function

To study the large-scale behavior of the height function
for arbitrary initial states, we define a coarse-grained two-
dimensional height variable,

�h(x,t) =
(

h1(x,t)
h2(x,t)

)
. (6)

Since �A + �B + �� = 0, it follows that ρA = ρB = ρ� = 1/3
for the average particle densities [20]. Therefore, we define
coarse-grained local densities ρA(x,t), ρB(x,t), and ρ�(x,t)
for species A, B, and �, respectively, as follows:

ρA(x,t) = 1
3 + 2

3 ( �A · ∇�h(x,t)),

ρB(x,t) = 1
3 + 2

3 ( �B · ∇�h(x,t)), (7)

ρ�(x,t) = 1
3 + 2

3 ( �� · ∇�h(x,t)).

Here, ∇�h denotes the one-dimensional derivative in the
direction of the diffusing particles, i.e., along the coarse-
grained chain in (111)-direction. Each of the densities fluc-
tuates around its equilibrium value 1

3 and will be changed

proportionally to the change ∇�h in the height variable �h(x,t)
projected onto the respective growth direction.

To derive a nonlinear evolution equation for �h(x,t) we recall
that the local particle density describes the gradient of the
height vector; see Eq. (5) for the discrete case. To obtain an
equivalent continuum description we symmetrize the discrete
gradient and expand the ρi for i = A,B,� around x to second
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order, leading to

ρA

(
x ± 1

2

) � 1
3 + 2

3 ( �A · ∇�h) ∓ 1
3 ( �A · ��h) + · · · (8)

The next step is to consider the time evolution of the height
variable �h(x,t). From the absence of correlations in the
stationary distribution and the dynamical rules of the model
we find

�̇h(x) = (r3 − r4)( �� − �A) ρ�

(
x − 1

2

)
ρA

(
x + 1

2

)
+ (r1 − r2)( �B − �A) ρB

(
x − 1

2

)
ρA

(
x + 1

2

)
+ (r5 − r6)( �� − �B) ρ�

(
x − 1

2

)
ρB

(
x + 1

2

)
. (9)

This equation describes how the height variable will change
after two particles on the lattice will have interchanged places.
The increase is proportional to the density of particles and
is proportional to the growth direction associated with the
interchange process.

We will adopt the following notation:

r1 + r2 = p, (10)

r5 + r6 = q, (11)

r3 − r4 = f1, (12)

r5 − r6 = f2, (13)

r1 − r2 = f1 − f2. (14)

The last equation follows from the pairwise balance require-
ment Eq. (2). Putting everything into Eq. (9) and denoting
transposition of a vector or matrix by a superscript T , we

obtain

∂

∂t
�h(x) =

(
1
6 (f1 − 2f2)

1
2
√

3
f1

)
+

( (f1−2f2)
6 − f1

2
√

3

− f1

2
√

3
− (f1−2f2)

6

)
∇�h

+
( (p+q)

4
(p−q)
4
√

3
(p−q)
4
√

3
2r1+2r5+3(p+q)

12

)
∇2 �h

+

⎛
⎜⎜⎜⎜⎝

(∇�h)T
(− (f1−2f2)

3 − f1

2
√

3

− f1

2
√

3
0

)
∇�h

(∇�h)T
(

0 − (f1−2f2)
6

− (f1−2f2)
6 − f1√

3

)
∇�h

⎞
⎟⎟⎟⎟⎠ + · · ·

(15)

Taking the gradient on both sides one recognizes two coupled
KPZ equations with nonvanishing drift term that mixes the two
height components.

We express this system of nonlinear coupled equations
in terms of eigenfunctions of matrix multiplying ∇�h. The
eigenvalues are

v1,2 = ± 1
3

√
f 2

1 − f1f2 + f 2
2 =: ± 1

3 s(f1,f2). (16)

The expression under the square root is always positive except
for f1 = f2 = 0 in which case not only v1 = v2 = 0 but where
also the nonlinear term vanishes. This corresponds to the
(boring) case of symmetric diffusion which we exclude from
our considerations. It is interesting that the two eigenvalues
λ1,2 are then never equal. This implies that the drift term cannot
be removed by a Galilei transformation.

When f1 = 0 we do not need to apply a similarity
transformation. The result of the transformation to eigenmodes
�̃h(x) for f1 �= 0 is

∂

∂t
�̃h(x) =

(
ṽ1

ṽ2

)
+

(
− 1

3 s(f1,f2) 0

0 1
3 s(f1,f2)

)
∇ �̃h(x) +

(
M11 M12

M21 M22

)
∇2 �̃h(x) +

⎛
⎜⎜⎜⎝

(∇ �̃h(x))T
(

N11 N12

N21 0

)
∇ �̃h(x)

(∇ �̃h(x))T
(

0 P12

P21 P22

)
∇ �̃h(x)

⎞
⎟⎟⎟⎠ + · · · ,

(17)

with the average growth velocities

ṽ1 = f1(f1 − 2f2 + s(f1,f2))
(
2f 2

1 + 2f2(f2 + s(f1,f2)) − f1(2f2 + s(f1,f2))

6s(f1,f2)|f1| ,

ṽ2 = f1(−f1 + 2f2 + s(f1,f2))
(
2f 2

1 + 2f2(f2 − s(f1,f2)) + f1(−2f2 + s(f1,f2))

6s(f1,f2)|f1| ,

of the two projected height variables in normal mode coordinates and the matrix elements

M11 = f2(3(p − q) − (r1 + r5)) + (f1 − f2)(3(p − q) + r1 + r5) + 2s(f1,f2)(3(p + q) + r1 + r5)

24s(f1,f2)
,

M22 = −f2(3(p − q) + r1 + r5) − (f1 − f2)(3(p − q) + r1 + r5) + 2s(f1,f2)(3(p + q) + r1 + r5)

24s(f1,f2)
,

M12 = −
(−f1 + 2f2 + 2s(f1,f2))

√
6f 2

1 − 6f1f2 + f2(2f2 − s(f1,f2))

24f1s(f1,f2)
√

6f 2
1 − 6f1f2 + f2(2f2 + s(f1,f2))

(−2f1(r1 + r5) + f2(−p + q + (r1 + r5))),
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M21 = −
(f1 − 2f2 + 2s(f1,f2))

√
6f 2

1 − 6f1f2 + f2(2f2 + s(f1,f2))

24f1s(f1,f2)
√

6f 2
1 − 6f1f2 + f2(2f2 − s(f1,f2))

(−2f1(r1 + r5) + f2(−p + q + (r1 + r5))),

N11 = −
f1(f1 − 2f2 + s(f1,f2))

√
6f 2

1 − 6f1f2 + f2(2f2 + s(f1,f2))

3s(f1,f2)|f1| ,

P22 = −
f1(−f1 + 2f2 + s(f1,f2))

√
6f 2

1 − 6f1f2 + f2(2f2 − s(f1,f2))

3s(f1,f2)|f1| ,

N12 = N21 = −|f1|((f1 − f2)(−(f1 − f2)2 + 5(f1 − f2)s(f1,f2)) + f 2
1 (−f1 + s(f1,f2)))

6s(f1,f2)(f1)
√

6f 2
1 − 6f1f2 + f2(2f2 − s(f1,f2))

,

P12 = P21 = −|f1|((f1 − f2)((f1 − f2)2 + 5(f1 − f2)s(f1,f2)) + f 2
1 (f1 + s(f1,f2)))

6s(f1,f2)(f1)
√

6f 2
1 − 6f1f2 + f2(2f2 + s(f1,f2))

,

of the phenomenological diffusion matrix. The matrices N and
P are the mode coupling matrices which yield the structure of
the non-linear part of the coarse-grained evolution equation.
We checked that for f1 �= 0 the expressions under the square
roots will always be positive or zero, and that the denominators
are not zero. By rewriting these equations in terms of the height

gradients �̃ρ(x,t) = ∇ �̃h(x,t) one gets a system of coupled
Burgers equations.

B. Stationary space-time fluctuations

As has become clear from the previous section it is
convenient to work with height gradients that map to densities
ρα(x,t), which are globally conserved, i.e.,

∫
dxρα(x,t) =

Lρα for a system of length L. A fundamental quantity of
interest is the dynamical structure function which are the
stationary two-time correlations of the height gradients. For
n conserved densities this is an n × n matrix with the two-
point correlations between the (centered) densities uα(x,t) =
ρα(x,t) − ρα at time t0 and t0 + t . Because of stationarity t0 is
immaterial and can be set to 0.

1. Nonlinear fluctuating hydrodynamics

To study such a system with noisy dynamics on a coarse-
grained level we follow the powerful and nonlinear fluctuating
hydrodynamics (NLFH) approach [13] whose essence and
main insights we briefly summarize.

Consider a system with n conserved densities ρα and
associated locally conserved currents jα . On coarse-grained
Eulerian scale, where the noise drops out as a result of the
law of large numbers, the conservation laws imply that the
densities satisfy the nonlinear system of PDEs [9,21],

∂

∂t
�ρ(x,t) + ∂

∂x
�j (x,t) = 0, (18)

where component ρα(x,t) of the vector �ρ(x,t) is a coarse-
grained conserved quantity and the component jα(x,t) of
the current vector �j (x,t) is the associated locally conserved
current. Notice that in our convention �ρ and �j are regarded as
column vectors.

Because of local stationarity under Eulerian scaling the
current is a function of x and t only through its dependence
on the local conserved densities. Hence, these equations can
be rewritten as

∂

∂t
�ρ(x,t) + J (x,t)

∂

∂x
�ρ(x,t) = 0, (19)

where J (x,t) is the current Jacobian with matrix elements
Jαβ = ∂jα/∂ρβ , understood as functions of x and t via ρα(x,t)
via the stationary current-density relation �j ∗( �ρ). In other
words, �j (x,t) = �j ∗( �ρ(x,t)). Obviously, constant densities ρα

are a (trivial) stationary solution of Eq. (19). Stationary
fluctuations of the conserved quantities are captured in the
compressibility matrix K that we shall not describe explicitly.

Up to this point the system Eq. (19), and therefore also
its expansion in uα(x,t), is completely deterministic. In the
NLFH approach the effect of fluctuations is captured by adding
a phenomenological diffusion matrix D and white noise terms
ξi . This turns Eq. (19) into a system of nonlinear stochastic
PDEs. From renormalization group considerations it is known
that polynomial nonlinearities of order higher than 4 are
irrelevant for the large-scale behavior and order 3 leads at most
to logarithmic corrections if the generic quadratic nonlinearity
is absent [22]. This justifies an expansion to second order so
that the fluctuation fields uα(x,t) satisfy the system of coupled
noisy Burgers equations,

∂t �u = −∂x

(
J �u + 1

2 �uT �H �u − D∂x �u + B�ξ)
, (20)

where �H is a column vector whose entries ( �H )α = Hα are the
Hessians with matrix elements Hα

βν = ∂2jα/(∂ρβ∂ρν). If the
quadratic nonlinearity is absent one has diffusive behavior. We
stress that the Hessians �H depend on the stationary densities
around which one expands, but not on space and time. Hence
they are fixed by the stationary current-density relation �j ∗( �ρ).

To proceed further it is convenient to transform into
normal modes �φ = R�u, where RJR−1 = diag(vα) and the
transformation matrix R. The eigenvalues vα of J play the role
of characteristic speeds that on microscopic scale describe the
speed of local perturbations [23]. One thus arrives at

∂tφα = −∂x[vαφα + �φT Gα �φ − ∂x(D̃ �φ)α + (B̃�ξ )α], (21)
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with D̃ = RDR−1 and B̃ = RB. The matrices

Gα = 1

2

∑
γ

Rαγ (R−1)T Hγ R−1 (22)

are the mode coupling matrices with the mode-coupling coef-
ficients Gα

βγ = Gα
γβ , which are, by construction, symmetric.

They are said to satisfy the trilinear condition if they satisfy
also the symmetry Gα

βγ = Gβ
αγ [14,15].

The main quantities of interest are then dynamical structure
functions,

Sαβ (x,t) = 〈φα(x,t)φβ(0,0)〉, (23)

which describe the stationary space-time fluctuations of the
normal modes. They satisfy the normalization∫ ∞

−∞
dx Sαβ(x,t) = δα,β, (24)

which arises from the conservation law and the normalization
condition RKRT = 1. It is important to note that in the
absence of long-range order and long-range jumps generally
the product JK of the Jacobian with the compressibility
matrix K is symmetric, which can be proved mathematically
rigorously [24]. This guarantees that on macroscopic scale
the full nonlinear system Eq. (19) is hyperbolic [25], i.e.,
characteristic velocities vα are real.

When the characteristic velocities are all different, i.e., in
the strictly hyperbolic case, the off-diagonal terms Sαβ decay
quickly and for long times and large distances one is left
with the diagonal elements Sαα(x,t) which are asymptotically
universal functions Sαα(x,t) ∼ t−1/zαf (uα) with the scaling
variable uα = (x − vαt)zα /t . Here zα is the dynamical expo-
nent.

These scaling functions can be evaluated using mode
coupling theory [13,26]. As pointed out in the introduction,
in systems with short-range interactions there is an infinite
discrete family of universality classes with dynamical expo-
nents zα that are the Kepler ratios of neighboring Fibonacci
numbers Fα+2/Fα+1 [4], beginning with z1 = 2 = F3/F2

corresponding to diffusion and Gaussian scaling function f ,
followed by zα = 3/2,5/3,8/5, . . . . Also the limit value of
this sequence, which is the golden mean φ = (1 + √

5)/2, can
arise.

Which dynamical universality classes appear depends on
which diagonal elements of the mode coupling matrix vanish.
A full classification for n = 2 is given in Refs. [3,7] and for
general n in Ref. [26]. For n = 2 one can have diffusion with
z = 2, and also exponents z = 3/2,5/3,φ. The dynamical
exponent z = 3/2 can describe the KPZ universality class
[2] (in which case the scaling function f is the celebrated
Prähofer-Spohn function [27]), or a modified KPZ universality
class with unknown scaling function [3], or a Lévy universality
class [3,5,26,28]. The z = 5/3 Lévy class characterizes the
heat mode in anharmonic chains [29,30] and one-dimensional
fluids obeying Hamiltonian dynamics [6].1 Experimental

1The dynamical exponent z = 5/3 has also been reported for heat
transport in hard-point particle gases [31], but universality for this
system has been challenged recently [32,33].

evidence for anomalous heat conduction has been found in
single multiwalled carbon and boron-nitride nanotubes at room
temperature [34].

The upshot of the mode coupling treatment of NLFH is
that the dynamical universality classes can be directly inferred
from the structure of the mode coupling matrices, which in turn
is fully determined by the stationary current-density relation
�j ∗( �ρ) for the conserved densities �ρ of the system.

The theory of nonlinear fluctuating hydrodynamics com-
bined with mode-coupling theory is rather robust. It relies
fundamentally on the presence long-lived long wave-length
modes which arise from the conservation laws. Excluded are
(i) systems that exhibit long-range order in the stationary
state, in which case complex characteristic velocities indicative
of phase separation [35–37] may arise. (ii) In systems with
long-range interactions other discrete dynamical exponents
may appear, e.g., the ballistic universality class with z = 1 in
nearest-neighbor hopping with long-range dependence of the
hopping rate [38–40], or in models with long-range jumps such
as the raise-and-peel model [41], or the Oslo rice pile model
for which a numerically determined dynamical exponent
is conjectured to take the rational value z = 10/7 [42].
(iii) Also integrable models with non-local conservation laws
might conceivably exhibit dynamical exponents that are not
Kepler ratios. However, so far there is no evidence for such an
anomaly [43].

The family of height models considered here falls into
neither of these three long-range categories (i)–(iii) and
therefore one expects all dynamical exponents to be the
Kepler ratios derived in Ref. [4]. They appear in combinations
that can be derived from the mode coupling matrices for
a general number of conservation laws following Ref. [26]
and specifically for n = 2 from the earlier work [3,7]. In
the following we compute the mode coupling matrices for
the directed polymer model first for n = 2 (corresponding
to d = 3) and then for general n to work out the dynamical
universality classes of the n generalized height functions.

2. Fluctuations in d = 3

In the following, we apply the approach based on NLFH
that we have outlined above to the directed polymer model
in three dimensions, with the aim of identifying its universal
classes through analysis of the mode-coupling matrix.

When f1 = 0 the matrices appearing in the quadratic term in
the right-hand side of Eq. (15) are the mode coupling matrices
Eq. (22) introduced above. One sees that the height variable h2

has neither a quadratic self-coupling nor a nonlinear coupling
to h1. On the other hand, h1 has a nonvanishing quadratic
nonlinearity, but no quadratic coupling to the diffusive mode.
Hence according to [3,7] the evolution of h2 is diffusive and
mode 1 is KPZ.

In the matrices N and P one recognizes the mode coupling
matrices Gα Eq. (22) arising from NLFH. Thus the universality
classes can be identified. Since both mode coupling matrices
have generically nonvanishing self-coupling coefficients N11

and P22 we arrive at the conclusion that generically the two-
component height model has two KPZ modes whose centers of
mass drift away from each other with speeds Eq. (16). Similar
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models were studied by Kim and den Nijs [44] and Ferrari,
Sasamoto, and Spohn [14].

Notice, however, that s(f,f ) = s(f,0) = f . Therefore,
when f1 = f2 =: f �= 0 one has s(f,f ) = f and, therefore,
N11 = 0, P22 �= 0. In this case, mode 1 is diffusive while mode
2, which has no coupling to the diffusive mode, is KPZ. On the
other hand, when f1 = f �= 0 and f2 = 0 one gets N11 �= 0,
P22 = 0, which is the same scenario with the role of two modes
interchanged. Therefore, also mixed dynamics may occur. In
the trivial case where f1 = f2 = 0 both modes are diffusive.

IV. THE n-COMPONENT PARTICLE
EXCHANGE PROCESS

As discussed above the mapping between the height model
and exclusion can be applied to any dimension d � 2. Here
we define the corresponding multispecies exclusion process
and discuss it in detail in the hopping rates for which the
stationary distribution factorizes. We shall call this process
the n-component particle exchange process (PEP). For more
general exclusion processes with nearest-neighbor particle
exchange and nonfactorized stationary distributions we refer
to Refs. [45,46] and, for the present context, to Ref. [14].
We derive the exact mode coupling matrices in explicit form
and thus identify the possible universality classes for arbitrary
dimension d.

A. Definition and stationary properties

In the n-component PEP an exclusion particle of type α ∈
{0,1, . . . ,M} on site k exchanges with type β on site k + 1
with rate gα,β , symbolically

AαAβ → AβAα with rate gα,β .

Type 0 is called vacancy and we speak of M distinct conserved
species of particles. The total number of particles of each
species in the system is denoted Nα . We consider L sites with
periodic boundary conditions. It is convenient to decompose
the rates into a symmetric part wα,β = wβ,α > 0 for α �= β

and an antisymmetric part fα,β = −fβ,α in the form

gα,β = 1
2 (wα,β + fα,β ). (25)

Positivity of the rates implies wα,β � |fα,β |. For convenience
we define wα,α = fα,α = 0 and denote the vacuum driving
fields for particles with vacant neighbors by

fα := fα,0, (26)

which implies, by definition, f0 = 0. If for some α one
has wα,0 = |fα|, the vacuum motion of species α is totally
asymmetric.

From pairwise balance [19] we find that the canonical
stationary distribution with Nα particles is uniform, provided
that the condition

fα,β = fα − fβ (27)

is satisfied with driving fields in the physical domain |fα| �
wα,0. It follows that the grandcanonical stationary ensemble
with fluctuating particle numbers is a product measure defined

by fugacities μα , or equivalently, particle densities

ρα := 〈Nα 〉/L = eμα∑M
α′=0 eμ′

α

. (28)

The product structure leads to the covariances (generalized
compressibilities)

καβ := ∂ρα

∂μβ

= 1/L〈(Nα − 〈Nα〉)(Nβ − 〈Nβ〉)〉

= ρα(δα,β − ρβ). (29)

We denote the compressibility matrix with matrix elements
καβ by K . By construction, K = KT is symmetric.

Consider the local density ρα
k := 〈 nα

k 〉, i.e., the expectation
of the local particle number nα

k ∈ {0,1}. Particle number
conservation implies the discrete continuity equation

d

dt
ρα

k = jα
k−1 − jα

k , (30)

where, by definition of the process, the expected local current
of species α is given by

jα
k =

M∑
β=0

gα,β

〈
nα

k n
β

k+1

〉 − gβ,α

〈
n

β

k nα
k+1

〉
. (31)

In the grandcanonical stationary distribution one has

jα = ρα

⎛
⎝fα −

M∑
β=1

fβρβ

⎞
⎠. (32)

This follows from the factorization property of the grand-
canonical stationary distribution.

B. Collective velocities

As discussed above one expects in the hydrodynamic limit
on Euler scale the system of conservation laws Eq. (19) where
J is the flux Jacobian with matrix elements,

Jαβ = ∂jα

∂ρβ

=
⎡
⎣fα −

M∑
γ=1

fγ ργ

⎤
⎦δα,β − fβρα. (33)

To derive the normal modes for nonzero densities and
nonzero driving fields we introduce the diagonal matrices ρ̂ :=
diag(ρα) and f̂ := diag(fα) with the densities and driving
fields resp. on the diagonal. Then we can write

J = D−1BD, (34)

where D =
√

f̂ /ρ̂ and B = BT . The nondiagonal matrix

elements of B are Bαβ = −√
fαραfβρβ . This implies that J

can be diagonalized with the help of D and an orthogonal
matrix O. With Ĵ := diag(vi), one can write

RJR−1 = Ĵ , (35)

where R = Q−1OD and R−1 = D−1OT Q with an invert-
ible diagonal matrix Q = diag(qα). Notice also that RT =
DOT Q−1 and (R−1)T = QOD−1. Choosing Q such that

RKRT = 1, (36)
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one obtains an orthonormal basis of the modes. To compute
the matrix Q we observe that

J = KD2 −
∑

α

fαρα1. (37)

Thus, RKRT = Q−1ODJD−1OT Q−1 + ∑
α fαραQ−1O

OT Q−1 = (RAR−1 + ∑
α fαρα1)Q−2. This yields

q2
α = vα +

∑
α

fαρα. (38)

We remark that decomposing J into a traceless part and the
trace yields

J = J̃ + 1

M

∑
α

fα(1 − (M + 1)ρα)1, (39)

which can be written in the form J = D−1B̃D + V1 with
traceless and symmetric B̃. For the completely symmetric state
with ρα = 1/(M + 1) as for the generalized height model one
has V = 0 and the collective velocities are the eigenvalues of
B̃. On the other hand, for equal driving fields fα = f one has
V = f (1 − ∑M

α=1 ρα), which vanishes only for the completely
filled lattice. This then is the multispecies simple exclusion
process.

C. Mode-coupling coefficients

The Hessians

H
γ

αβ := ∂2jγ

∂ρα∂ρβ

= ∂αJγβ (40)

are constants

H
γ

αβ = −(fαδβ,γ + fβδα,γ ). (41)

This simple form allows us to compute explicitly the mode-
coupling coefficients

G
γ

αβ := 1

2

∑
λ

Rγλ[(R−1)T HλR−1]αβ. (42)

According to the definitions given above, we have

Dαβ =
√

fα

ρα

δα,β (43)

and

Rαβ = q−1
α

√
fβ

ρβ

Oαβ,

(R−1)αβ = qβ

√
ρα

fα

Oβα = q2
β

ρα

fα

(RT )αβ,

(RT )αβ = q−1
β

√
fα

ρα

Oβα,

((R−1)T )αβ = qα

√
ρβ

fβ

Oαβ = q2
α

ρβ

fβ

Rαβ. (44)

Hence, by straightforward computation

G
γ

αβ = 1

2

∑
λ

∑
μ

∑
ν

Rγλ((R−1)T )αμHλ
μν(R−1)νβ

= −1

2

∑
μ

∑
ν

[fμRγν((R−1)T )αμ(R−1)νβ

+ fνRγμ((R−1)T )αμ(R−1)νβ]

= −1

2

∑
μ

[fμ ((R−1)T )αμ δβ,γ + fμ (R−1)μβ δα,γ ]

= −1

2

[
q2

α

∑
μ

Rαμρμ δβ,γ + q2
β

∑
μ

Rβμρμ δα,γ

]

= −1

2

[
q2

α(R �ρ)α δβ,γ + q2
β(R �ρ)β δα,γ

]
. (45)

We point out the nontrivial trilinear property G
γ

αβ = Gα
γβ ,

which one expects for systems where the driving force does
not change the stationary distribution [14,15].

For the diagonal elements, one has

Gγ
αα = −q2

α (R �ρ)α δα,γ . (46)

Hence, generically all modes are KPZ and there are only
subleading corrections since G

γ
αα = 0 for α �= γ . If one of

the coefficients q2
α(R �ρ)α vanishes, then this mode is diffusive

and all other modes evolve independently of this mode.

D. Details for two conservation laws

We return to the case n = 2 and at least one driving
field nonzero and present the diagonalization explicitly and
in detail for arbitrary densities. For the two-component PEP
with arbitrary densities ρα , we have

j1 = f1ρ1(1 − ρ1) − f2ρ1ρ2, j2 = f2ρ2(1 − ρ2) − f1ρ1ρ2,

(47)

and the compressibility matrix is given by

K =
(

ρ1(1 − ρ1) −ρ1ρ2

−ρ1ρ2 ρ2(1 − ρ2)

)
. (48)

We find

J =
(

f1(1 − 2ρ1) − f2ρ2 −f2ρ1

−f1ρ2 f2(1 − 2ρ2) − f1ρ1

)

=
(

1
2 (f1(1 − ρ1) − f2(1 − ρ2)) −f2ρ1

−f1ρ2 − 1
2 (f1(1 − ρ1) − f2(1 − ρ2))

)
+ 1

2

2∑
α=1

fα(1 − 3ρα)1. (49)
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To compute the eigenvalues of J we use Eq. (39). For n = 2
this yields as eigenvalues of B̃ the quantities ±

√
det B̃ and,

therefore,

v1,2 = 1

2

[
2∑

α=1

fα(1 − 3ρα)

±
√

[f1(1 − ρ1)−f2(1−ρ2)]2+4f1ρ1f2ρ2

]
. (50)

In the domain of interest 0 < ρ1 + ρ2 < 1 one has det B̃ > 0.
Hence, the corresponding system of conservation laws is
strictly hyperbolic. For the special case ρ1 = ρ3 = 1/3 we
recover Eq. (16).

To compute R we define the orthgonal matrix

O =
(

cos φ − sin φ

sin φ cos φ

)
. (51)

Straightforward computation shows that J is diagonalized with
the choice

tan (2φ) = 2
√

f1ρ1f2ρ2

f1(1 − ρ1) − f2(1 − ρ2)
. (52)

This yields, together with Eq. (36),

R =

⎛
⎜⎝q−1

1

√
f1

ρ1
cos φ −q−1

1

√
f2

ρ2
sin φ

q−1
2

√
f1

ρ1
sin φ q−1

2

√
f2

ρ2
cos φ

⎞
⎟⎠,

R−1 =

⎛
⎜⎝ q1

√
ρ1

f1
cos φ q2

√
ρ1

f1
sin φ

−q1

√
ρ2

f2
sin φ q2

√
ρ2

f2
cos φ

⎞
⎟⎠, (53)

where

q2
i = vi + f1ρ1 + f2ρ2. (54)

The Hessians are

H 1 = −
(

2f1 f2

f2 0

)
, H 2 = −

(
0 f1

f1 2f2

)
, (55)

and Eq. (42) yields

G1 = −1

2

(
2g1 g2

g2 0

)
, G2 = −1

2

(
0 g1

g1 2g2

)
,

(56)

with coupling constants

g1 = q1(
√

f1ρ1 cos φ −
√

f2ρ2 sin φ),

g2 = q2(
√

f1ρ1 sin φ −
√

f2ρ2 cos φ). (57)

As expected, generically both modes are KPZ with subleading
corrections.

Care has to be taken if f1 = 0 and f2 = f �= 0. Then,

j1 = −fρ1ρ2, j2 = fρ2(1 − ρ2) (58)

and

J =
(−fρ2 −fρ1

0 f (1 − 2ρ2)

)
. (59)

This yields the collective velocities

v1 = −fρ2, v2 = f (1 − 2ρ2) (60)

and

R =
⎛
⎝

√
1−ρ2

ρ1(1−ρ1−ρ2)

√
ρ1

(1−ρ1−ρ2)(1−ρ2)

0 1√
ρ2(1−ρ2)

⎞
⎠,

R−1 =
⎛
⎝

√
ρ1(1−ρ1−ρ2)

1−ρ2
−ρ1

√
ρ2

1−ρ2

0
√

ρ2(1 − ρ2)

⎞
⎠. (61)

For the Hessians, one has

H 1 = −f

(
0 1
1 0

)
, H 2 = −2f

(
0 0
0 1

)
. (62)

Then Eq. (42) yields

G1 = −f

2

√
ρ2(1 − ρ2)

(
0 1
1 0

)
,

G2 = −f
√

ρ2(1 − ρ2)

(
0 0
0 1

)
. (63)

(We remind the reader that the labels at G and H are upper
indices, not powers.) Hence, mode 1 is diffusive and mode 2
is KPZ.

The case f2 = 0 and f1 = f �= 0 follows by symmetry.
We also consider f1 = f2 = f . In this case, Eq. (52) yields
tan φ = √

ρ1/ρ2, in which case Eq. (57) gives g1 = 0, or
tan φ = −√

ρ2/ρ1 in which case g2 = 0. Hence, one of the
modes is diffusive, as first argued in Ref. [47].

V. CONCLUSIONS

We have treated coupled nonlinear stochastic PDE equa-
tions of KPZ type in two different contexts: A model
for directed polymers in d = 3 where we derived from a
dynamical mean field approach a system of two coupled
partial differential equations, and from nonlinear fluctuating
hydrodynamics theory where the same equations are shown
to follow from conservation laws for the densities and the
presence of noise. These equations can then be treated in mode
coupling theory. Both approaches lead to the same structure of
the mode coupling terms.

Next, we generalized the lattice gas approach to an arbitrary
number n of conserved particle species, corresponding to a
model for directed polymers in d = n + 1 dimensions. Thus,
we give a direct physical link between fluctuations in the
conformations of the polymer and the underlying particle
exchange processes on the lattice. This allows in particular
to understand and access different cases of the general
classification given in Refs. [3,7] for two conservation laws and
for an arbitrary number of conservation laws in Refs. [4,26].
It turns out that stationary spatiotemporal fluctuations in
the polymer model are generally either diffusive or in the
universality class of the one-dimensional KPZ equation.

This behavior of the coupled one-dimensional KPZ equa-
tions is in contrast to the two-dimensional KPZ equation
which was investigated mostly numerically over the last years
[48–52]. A major difference to the one-dimensional KPZ
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universality class shows up already at the level of critical expo-
nents. The 1D static critical KPZ exponent χ , which in lattice
gas language reflects the fluctuations of the particle number
in a large but finite segment of the 1D lattice, takes the exact
value 1/2, while in two dimensions one finds numerically quite
accurate values ranging from 0.363 to 0.393, depending on the
choice of microscopic model (see Ref. [52] for an overview that
includes also earlier numerical results). For the scaling expo-
nent β = χ/z Halpin-Healy finds in two dimensions numerical
values between 0.235 and 0.248 [49] rather than the exact value
1/3 for one dimension. On the microscopic level the difference
between the fluctuating polymer considered here and the three-
dimensional directed polymer model of Ref. [49] is that in our
case each polymer conformation has the same energy, while in
Ref. [49] the directed polymer is a directed walk through a 3D
lattice of random energy sites such that the total path energy is
the sum of the site energies visited along the way. It thus ap-
pears that two coupled one-dimensional KPZ equations behave
fundamentally differently from a two-dimensional single KPZ
equation.

There is an interesting open problem: The totally asym-
metric two-component model (w10 = f1, w20 = f2 w12 =
f1 − f2) is integrable [53]. Can one use the integrability
to obtain directly the exact scaling form of the dynamical
structure function? From the results of the present work one
expects this to be the Praehofer-Spohn scaling function [27]
for each mode separately.
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