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Probably more so than anything we have done up to now, exponential and log func-
tions give rise to many useful applications. To ease into the lesson, let’s start with
something that requires no new information. By this point, we should be fairly comfort-
able manipulating exponential and logarithmic equations.

Example 1. Solve the following equation for t.

a = b(8− ect)

Solution. We just want to isolate t.

a = b(8− ect)
a

b
= 8− ect

ect = 8− a

b

ct = ln

(
8− a

b

)
t =

1

c
ln

(
8− a

b

)
.

Note that in order to have a solution for t, we require that b 6= 0 (which we need from the
statement of the problem), we also require c 6= 0 and because of the domain restriction
from log, we need a/b < 8.

One important type of example is that of 1
2 -life. In a previous lesson, we used

the A = Pert equation to model continuous compounding. In fact, we can model
any exponential growth or decay using this exact expression. Typically the letters get
changed a bit, but the essence is still there. So we will be using

A(t) = A0e
kt

to model exponential growth (decay). In this equation A(t) represents the amount at
time t, A0 is the initial amount, k is the rate of growth (decay), and t is time. In the
interest problems we required that t be in years, but for other applications, we don’t
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make such an assertion. So t can be any unit of time, and k will be some constant rate
which depends on the unit of time we use.

In case you don’t know, 1
2 -life refers to the amount of time it takes for some (generally

radioactive) substance to decay to half of its original mass. For example Carbon-14 has
a 1

2 -life of about 5730 years. When scientists try to determine how old certain things
are, they look at the amount of 14C is present and estimate the age with their knowledge
of how quickly 14C decays.

Example 2. You asked for gold for Christmas and foolishly did not specify which
isotope. As a result, your friend gives you a 1kg sample of 196Au, which has a half-life
of 148.39 hours.

(a) Find a function A(t) for the amount of the isotope, A in grams, which remains after
time t in hours.

(b) Determine the time t in hours for 93% of the material to decay.

Solution. (a) As always, it is important to pay attention to units. We want A to be in
grams, but we are told that we start with 1 kg. So then A0 = 1000 g. Now we know
that the function is of the form

A(t) = 1000ekt,

but we don’t know what k is. To find k, we know that whenever t = 148.39, then we
have half of what we started with. So then

500 = 1000e148.39k

1

2
= e148.39k

ln

(
1

2

)
= 148.39k

k =
1

148.39
ln

(
1

2

)
≈ −0.00467

So then our function is
A(t) = 1000e−0.00467t.

(b) If 93% of the material has decayed, that means that there is only 7% remaining.
One way to set up this kind of problem is to think of our initial amount as 100%. Then
this looks like

7 = 100e−0.00467t.
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And now we want to solve for t.

7 = 100e−0.00467t

7

100
= e−0.00467t

ln

(
7

100

)
= −0.00467t

t =
1

−0.00467
ln

(
7

100

)
≈ 569.298 hours

Example 3. The radioactive isotope 93Sr has a half-life of 7.5 minutes. Find how long
it will take for a sample to decay so that 63% of its original mass remains.

Solution. In a situation like this, we must use the strategy from Example 2(b) as we are
not given an initial mass. Just for variety, another way to think about it than in terms
of percents is that when t = 7.5, then A(t) = 1

2A0. So then we may write

1

2
A0 = A0e

7.5t,

And when we divide both sides by A0, we will get A0/A0 which is 1. Now

1

2
A0 = A0e

7.5t

1

2
= e7.5t

ln

(
1

1

)
= 7.5t

t =
1

7.5
ln

(
1

1

)
≈ −0.0924.

So then the equation for the decay of the isotope is

A(t) = A0e
−0.0924t.

Now to find at what time 63% is remaining, it probably makes the most sense to
view masses as percentages again. So we have

63 = 100e−0.0924t

.63 = e−0.0924t

ln(.63) = −0.0924t

t =
1

−0.0924
ln(.63) ≈ 5.00 minutes.

Population growth, especially that of bacteria and spread of disease are well-modeled
by exponential growth functions. This next example is nice because we need to be able
to interpret real-world information to translate it to the equations we are familiar with.
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Example 4. In ideal conditions, the spread of disease follows the Law of Uninhibited
Growth

N(t) = N0e
kt.

During the 2014 West Africa Ebola outbreak, there were an estimated 800 reported cases
of Ebola on July 1, and 1500 on August 1 (31 days later). Let t be the time elapsed in
days since the first observation.

(a) Find the growth constant k. Round your answer to four decimal places.

(b) Find a function which gives the number of reported cases N(t) after t days.

(c) What is the doubling time for the number of reported cases?

Solution. (a) So here N0 = N(0) = 800 and N(31) = 1500. So we already know that the
function looks like

N(t) = 800ekt.

We just need to determine k. You should notice that as soon as we determine k, we
immediately have a solution for part (b). Now using the second piece of data, we know

1500 = 800e31k

15

8
= e31k

ln

(
15

8

)
= 31k

k =
1

31
ln

(
15

8

)
≈ .02.

(b) Here we just need to put it together, so N(t) = 800e.02t.
(c) To figure out the doubling time is quite similar to figuring out the half-life.

Whenever we have an initial amount N0, we are looking for the time t for which N(t) =
2N0. So this looks like

2N0 = N0e
kt.

In this particular example, we know what N0 is, so we can just say we want to solve
N(t) = 1600 for t. But this shows that we don’t actually need to know the initial amount
to figure out the doubling time.

Back to the problem at hand:

1600 = 800e.02t

2 = e.02t

ln 2 = .02t

t =
ln 2

.02
≈ 34.66 days.

For our final example, we turn to logistic growth, which has several applications, one
of which is modeling population growth of cities.
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Example 5. The population of a certain town is modeled by

P (t) =
670

1 + 6.55e−0.51t

where P (t) is the population t years after 2010. Such a model is called logistic growth
(decay if we e had a positive exponent).

(a) What is the population in 2010?

(b) Find the population in 2012.

(c) When will the population reach 310?

Solution. (a) This is just asking for P (0).

P (0) =
670

1 + 6.55e0
=

670

7.55
≈ 89.

We round to the nearest whole number under the assumption that we can’t have a
fraction of a person.

(b) This is just asking for P (2).

P (2) =
670

1 + 6.55e−0.51·2 ≈ 199.

(c) Here we want to solve for t in the expression P (t) = 310.

310 =
670

1 + 6.55e−0.51t

1 + 6.55e−0.51t =
670

310

6.55e−0.51t =
670

310
− 1

e−0.51t =
1

6.55

(
670

310
− 1

)
−0.51t =

1

6.55

(
670

310
− 1

)
t =

−1

0.51

(
1

6.55

(
670

310
− 1

))
≈ 3.39.

We have to interpret this as years since 2010, so our final answer is 2013.


