MA 158

Quiz 15

14 Νο $\epsilon \mu \beta \rho ι$ ος 2016

Instructions: Show all work, with clear logical steps. No work or hard-to-follow work will lose points.

Problem. (4 points) For the system of equations

$$\begin{cases} x^2 + y^2 = 8\\ y - x = k \end{cases}$$

find all values of k so that there will be

- (a) one solution,
- (b) two solutions, and
- (c) no solutions

Solution. Solving the second equation for y, we have y = x + k, and we plug that in to the first equation. This gives

$$x^{2} + y^{2} = 8$$
$$x^{2} + (x + k)^{2} = 8$$
$$x^{2} + x^{2} + 2kx + k^{2} = 8$$
$$2x^{2} + 2kx + k^{2} - 8 = 0.$$

With a = 2, b = 2k, $c = k^2 - 8$, we compute the discriminant:

$$\Delta = b^2 - 4ac = (2k)^2 - 4(2)(k^2 - 8)$$

= $4k^2 - 8k^2 + 64$
= $-4k^2 + 64$.

Now this amounts to finding things about Δ . For (a), there is one solution when $\Delta = 0$, for (b), we will get two solutions when $\Delta > 0$ and for (c) we will have no solutions when $\Delta < 0$.

Setting $\Delta = 0$,

$$0 = -4k^{2} + 64$$

= -4(k^{2} - 4)
= -4(k + 4)(k - 4),

which gives $k = \pm 4$. Using a number line we see that if k < -4 or k > -4 then $\Delta < 0$ and when -4 < k < 4, then $\Delta > 0$.

$$\begin{array}{ccc} \ominus & \oplus & \ominus \\ \hline -4 & 4 \end{array}$$

To conclude, we have

(a) one solution when $k = \pm 4$,

(b) two solutions when k is in the interval (-4, 4), and

(c) no solutions when k is in $(-\infty, -4) \cup (4, \infty)$.