MA 158

7 septiembre 2016

Instructions: Show all work, with clear logical steps. No work or hard-to-follow work will lose points.

Problem 1. (2 points) Given

$$f(x) = \frac{7x+1}{9-x}, \quad g(x) = \frac{1}{x},$$

find $(f \circ g)(x)$.

Solution.

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{1}{x}\right) = \frac{7\left(\frac{1}{x}\right) + 1}{9 - \frac{1}{x}}$$
 ©

Problem 2. (2 points) Find $(g \circ f)(x)$ with the same f and g.

Solution.

$$(g \circ f)(x) = g(f(x)) = g\left(\frac{7x+1}{9-x}\right) = \frac{1}{\frac{7x+1}{9-x}} = \frac{9-x}{7x+1}$$

Problem 3. (Bonus 1 point) Find the domain of $f \circ g$ and $g \circ f$.

Solution. Recall that for x to be in the domain of $f \circ g$, we need x to be in the domain of g and g(x) to be in the domain of f. In other words, we need to check what values of x we can and can't plug into g, and then check what values of g(x) we can and can't plug into f.

For $f \circ g$, looking at g(x), we can't have x = 0. And for f(g(x)), we can't have $9 - \frac{1}{x} = 0$. Multiplying both sides of the equation by x, we see

$$9 - \frac{1}{x} = 0$$
$$9x - 1 = 0$$
$$9x = 1$$
$$x = \frac{1}{9}$$

Quiz 2

So, combined with the fact that we can't have x = 0, the domain of $f \circ g$ is $(-\infty, 0) \cup (0, 1/9) \cup (1/9, \infty)$.

Now for $g \circ f$, we can't have 9 - x = 0, i.e., we can't have x = 9. Then for g(f(x)), we can't have 7x + 1 = 0, i.e., $x = -\frac{1}{7}$. Putting these two facts together, we see that the domain for $g \circ f$ is $(-\infty, -1/7) \cup (-1/7, 9) \cup$ $(9, \infty)$. \bigcirc

In general when we're looking at a composition $f \circ g$, students usually forget to check whether x is in the domain for g. This usually happens because once they plug in g(x) into f and simplify, information gets lost. For example we could rewrite $f \circ g$ in Problem 1 as

$$(f \circ g)(x) = \frac{7+x}{9x-1}$$

after multiplying by $\frac{x}{x}$. As a standalone function, the domain of

$$\frac{7+x}{9x-1}$$

is $(-\infty, 1/9) \cup (1/9, \infty)$. But as the composition of f and g, we still can't have x = 0 because we are not allowed to plug 0 into g(x), so $(f \circ g)(0) = f(g(0))$ is undefined.