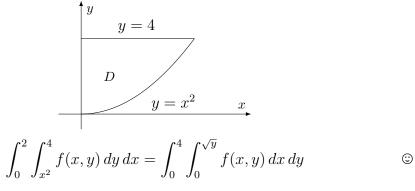
MA 261

7 M $lpha
ho \tau \iota o \varsigma$ 2016

٢

Instructions: Write down your name and section number. Show all work, with clear logical steps. No work or hard-to-follow work will lose points.

Problem 1. (5 points) Using polar coordinates, set up, but do NOT compute, the integral to find the volume of a sphere of radius a.


Solution. A sphere of radius a satisfies $x^2 + y^2 + z^2 = a^2$, or $z = \pm \sqrt{a^2 - x^2 - y^2}$. So by symmetry,

$$V = 2 \iint_{x^2 + y^2 \le a^2} \sqrt{a^2 - x^2 - y^2} \, dA$$
$$= 2 \int_0^{2\pi} \int_0^a \sqrt{a^2 - r^2} \, r \, dr \, d\theta \qquad ©$$

Problem 2. (5 points) Sketch the region of integration and change the order of integration.

$$\int_0^2 \int_{x^2}^4 f(x, y) \, dy \, dx.$$

Solution. The region of integration is $D = \{(x, y) \mid x^2 \le y \le 4, 0 \le x \le 2\}$, which is the same as $\{(x, y) \mid 0 \le x \le \sqrt{y}, 0 \le y \le 4\}$. Then we have

Problem 3. (5 points) Evaluate $e^{\pi i} + 1$. (Hint: $e^{\pi i} = -1$.) Solution. $e^{\pi i} + 1 = -1 + 1 = 0$.

Quiz 7

Problem 4. (5 points) Write whatever you want here. Have a good spring break! (And don't forget all the calculus you've learned!)

Solution. This was probably the catchiest response by a student:

"There's 104 days of summer vacation before school comes along just to end it so the annual problem for our generation is finding a good way to spend it..."