
Lesson 16 MA 16020 Nick Egbert

Overview

In this section we discuss series; in particular, geometric series are of interest as
they are far-reaching in application and frankly easy to calculate.

Lesson

First there is a bit of terminology to get out of the way. One word that will
get thrown around a lot is sequence, which is precisely what you think it is: a
list of numbers in a particular order. For example, 0, 2, 4, 6, . . . is a sequence of
nonnegative even integers. Of course, a sequence could be infinite or finite; the
more interesting case is if we have an infinite sequence.

Definition 1. Given an infinite sequence, a0, a1, a2, . . . , of numbers, if we add
all of the numbers in the sequence together, this is called a series (sometimes
infinite series), and we write

a0 + a1 + a2 + · · · =
∞∑

n=0

an

When we express a series as in the right hand side of the equation, we say that
we are expressing the series in sigma or summation notation. (Σ is the Greek
letter capital sigma.)

Definition 2. If we look at just the first n terms in the series, this is called the
nth partial sum, and we write

sn =

n−1∑
i=0

ai.

The series is said to be convergent if lim
n→∞

sn exists and is equal to a finite real

number, say s. If lim
n→∞

sn is infinite or does not exist, then the series is said to

be divergent.

That’s a lot of definitions at once, so let’s look at some examples to put the
terminology into practice.

Example 1. Find the 4th partial sum in the series
∞∑

n=1

3

2
n2

Solution. For n = 1, 2, 3, 4, we find

n an
1 3/2
2 (3/2) · 22
3 (3/2) · 32
4 (3/2) · 42
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So s4 = 3
2 (1 + 22 + 32 + 42) = 45.

Example 2. Write the series in sigma notation.

2

3
+

4

6
+

8

18
+

16

72
+

32

360

Solution. First, looking at the numerators, we see 2, 4, 8, 16, 32, . . . . If we start
our series at n = 1, it is easy to see that the general an will have 2n in the
numerator. The denominator is a bit more tricky. But you may notice that all
of the denominators are divisible by 3. So if we factor our a 3 from each of the
denominators, we produce the sequence of denominators

3, 3 · 2, 3 · 6, 3 · 24, 3 · 120, . . .

Looking at the leftovers, we see 1, 2, 6, 24, 120, . . . This may seem a bit unfamil-
iar, but we could write this as

1, 1 · 2, 1 · 2 · 3, 1 · 2 · 3 · 4, 1 · 2 · 3 · 4 · 5, . . .

And this is precisely the factorial (n!). So the denominator of the general an is
3(n!). Finally, putting this together in sigma notation,

∞∑
n=1

2n

3(n!)
.

Example 3. Write the series using summation notation.

9− 18

8
+

27

27
− 36

64
+

45

125

Solution. Again we’ll start our series from n = 1. Starting with the numerators
we have 9,−18, 27,−36, 45, . . . Let’s start with the alternating sign: +,−,+, . . .
How can we represent this for the general an? If a1 = 9, a2 = − 18

8 , etc., then
for n odd, an is positive, and for n even, an is negative. The easiest way to
represent this is (−1)n+1. Next, we see that the numerators are multiples of 9.
Thus so far we know

an =
(−1)n+1 · 9n
something

.

Now how about the denominators? 1, 8, 27, 64, 125, . . . If we think for a minute
we’ll see that each one of these is just n3. So putting this all together in sum-
mation notation, we have

∞∑
n=1

(−1)n+1 · 9n
n3

.

Remark. It can be quite a laborious task to try to come up with the general
an term in the series. Fortunately, in the Lon-Capa homework, these types of
questions are multiple choice. So you can write out the first few terms in each
of the answer choices and determine which choice matches the given problem.
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Note. You may have noticed by this point we have looked at series with two
different starting points, namely n = 0 and n = 1. In our definition we used
n = 0, but really a series can have any starting value. This is something to look
out for and can lead to representing the same series in two different ways.

Question. Which is greater: 0.9̄ or 1?

At first glance, this may seem like a ridiculous question, and the fact that
it’s even a question may lead you to believe that the answer is counterintuitive.
To answer it we’ll look into geometric series. A geometric series is a series where
all the terms have a common ratio, r, and is of the form

∞∑
n=0

arn = a + ar + ar2 + ar3 + · · ·

As we mentioned before, one thing that makes this series special is we know
how to calculate it. To do this let’s look at the nth partial sum, sn, and do
some algebra trickery:

sn = a + ar + ar2 + · · ·+ arn

−rsn = − ar − ar2 − · · ·+ arn − arn+1

sn − rsn = a − arn+1

Now solving for sn,

sn − rsn = a− arn+1

sn(1− r) = a(1− rn+1)

sn =
a(1− rn+1)

1− r
.

Finally, recall that the value of the sum is limn→∞ sn, and if −1 < r < 1,

lim
n→∞

sn = lim
n→∞

a(1− rn+1)

1− r

=
a(1− limn→∞ rn+1)

1− r

=
a

1− r
,

where in the last line we’ve used that if −1 < r < 1, then rn+1 → 0 as n→∞.
Thus the geometric series converges if |r| < 1 and diverges if |r| > 1, and this
leads to the important formula

∞∑
n=0

arn =
a

1− r
, |r| < 1 (1)
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Note. This formula will be (and has been) provided on each of the midterms,
so you won’t have to memorize the formula in and of itself. You will, however,
have to know how to use it.

With these tools, we are now ready to answer the big question.

Example 4. Write 0.9̄ as a series in sigma notation and compute the series.

Solution. Recall that 0.9̄ = 0.999999 . . . . Another way we could write this is

0.9 + 0.09 + 0.009 + 0.0009 + · · ·

And yet another way we could write this is

9

10
+

9

100
+

9

1000
+ · · ·

Factoring out a 9
10 ,

9

10

(
1 +

1

10
+

1

100
+ · · ·

)
Now the stuff in the parentheses mirrors our geometric series formula with
r = 1

10 . So in sigma notation, we have

∞∑
n=0

9

10

(
1

10

)n

.

To compute, we simply use (1):

∞∑
n=0

9

10

(
1

10

)n

=
9

10
· 1

1− 1
10

=
9

10
· 1

9
10

= 1.

This means that 0.9̄ and 1 are actually equal!

Example 5. Compute
∞∑

n=1

(
6

14

)n

Solution. Here r = 6
14 , but notice that we are starting the series at n = 1. One

way to do this is to shift the index from starting at n = 1 to starting at n = 0.
To do this, notice that the first term in the series is 6

14 , so when we start from
n = 0, the first term should still be 6

14 . Looking at
∑∞

n=0
6
14 , we see that the
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second term is 6
14 . So we can shift the index as follows:

∞∑
n=1

(
6

14

)n

=

∞∑
n=0

(
6

14

)n+1

=
∑
n=0

6

14

(
6

14

)n

=
6
14

1− 6
14

(2)

=
6
14

14
14 −

6
14

=
6

�14
8

�14

=
6

8

=
3

4
.

The value of the method used in Example 5 is that it allows us to memorize
only the one formula. The drawback is that it requires a little extra algebraic
manipulation that some may be uncomfortable with. One way to deal with this
is to come up with a formula for geometric series starting at n = 1. You’ll notice
that (2) is quite similar to (1), just with an extra 6

14 . So for a geometric series
starting at n = 1,

∞∑
n=1

arn =
ar

1− r
, |r| < 1 (3)

Example 6. Compute
∞∑

n=1

3(−1)n

82n

Solution. Here it might be a little less clear that this is a geometric series. But
after some manipulating, it should be clear.

∞∑
n=1

3(−1)n

82n
=

∞∑
n=1

3(−1)n

(82)
n

=

∞∑
n=1

3

(
−1

82

)n

=

∞∑
n=1

3

(
−1

64

)n
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Now it should be clear that this is a geometric series with a = 3 and r = − 1
64 .

Note that this series also starts at n = 1. Using equation (3) for geometric series
starting at n = 1, we easily compute

∞∑
n=1

3

(
−1

64

)n

= 3 ·
− 1

64

1− (− 1
64 )

= 3 ·
− 1

64
64
64 + 1

64

= 3 ·
− 1

�64
65

�64

= 3

(
− 1

65

)
= − 3

65
.

Although it didn’t come up explicitly in these examples, we’ll end with a
useful fact.

Useful Fact. Given convergent series
∑

an and bn and any number c,

1.
∑

(an + bn) =
∑

an +
∑

bn

2.
∑

(an − bn) =
∑

an −
∑

bn

3.
∑

can = c
∑

an

In the useful fact, we didn’t write the limits on the series, and this is often
done when it is clear from context or it is immaterial. We do that here for the
latter reason. However when writing series in sigma notation for homework,
quizzes, etc., you should take care to write where the start from.
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