
Lesson 23 MA 16020 Nick Egbert

Overview

In one-variable calculus you learned that if a function has a local maximum or minimum, then
the derivative is zero. Such a point with zero derivative is called a critical point. The first
method you learned to classify critical points was the so called first derivative test. Later you
learned the second derivative test which was much quicker when the test didn’t fail. In this
lesson we generalize the second derivative test for functions of two variables.

Lesson

Just as in functions of a single variable the definition of a local extremum is unsurprising.

Definition. A function f(x, y) has a local maximum (minimum) at the point (a, b) if we have
f(x, y) ≤ f(a, b) (f(x, y) ≥ f(a, b)) for all points (x, y) near (a, b). We say that the maximum
(minimum) occurs at (a, b) and f(a, b) is the maximum (minimum) value.

Note. The terms local extrema and relative extrema are used interchangeably.

Moreover, as in one-variable calculus, if f(x, y) ≤ f(a, b) for every (x, y) in the domain
of f , then f(a, b) is an absolute maximum of f . Similarly we have an absolute minimum if
f(x, y) ≥ f(a, b) for every (x, y) in the domain of f .

The question becomes how do we find extrema of a function of two variables? We can’t
just “set the derivative equal to zero” as in Calculus I, but it turns out that if f does have a
local extremum at the point (a, b), then fx(a, b) = 0 and fy(a, b) = 0. Such a point is called a
critical point. The first derivative test is no longer feasible, for there could be some directions
where the f(a, b) is a local maximum, but traveling along a different direction f(a, b) is a local
minimum. Such a point is called a saddle point and is illustrated below.

The graph above is that of z = x2 − y2. (Image courtesy of Wikipedia.) The red dot at the
origin is a saddle point. Notice as you walk along the x direction the surface is curved upward
at that point, but along the y direction, the surface is curved downward. The picture should
make it clear why this is called a saddle point. A more tangible example is that of a Pringles
chip.

Since we don’t have a first-derivative test, we look to the second-derivative test. As it turns
out, there is an analogue for functions of two variables. If you look up the second derivative test
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elsewhere, you’ll see that it’s the determinant of the matrix of the second partial derivatives
(we’ll talk about matrices later), and that’s a good way to remember the formula. But in this
class it will be given to you on your formula sheet. Without further adieu,

The Second Derivative Test (SDT). Suppose (a, b) is a critical point of f and the second
partial derivatives exist and are continuous. Let

D = D(a, b) = fxx(a, b)fyy(a, b) − [fxy(a, b)]
2
.

Then

(a) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

(b) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

(c) If D < 0, then f(a, b) is a saddle point.

(d) If D = 0 then the test is inconclusive.

With this test in mind, we aim to classify the critical points in the following examples.

Example 1. Find all local extrema of

f(x, y) = 11 + 8x− 5y − 3x2 − 7y2

2
.

Solution. In order to use the second derivative test, we need to calculate fxx, fyy, and fxy. And
before that, we need fx and fy to both be 0. These calculations should be pretty routine:

fx = 8 − 6x

fy = −5 − 14

2
y = −5 − 7y

fxx = −6

fyy = −7

fxy = 0

Setting fx = 8 − 6x = 0, we get x = 4/3, and setting fy = −5 − 7y = 0, we get y = 5/7. Thus
we only have one critical point, (4/3,−5/7). Plugging the second partials into the SDT,

D = (−6)(−7) − 02 = 42 > 0.

at the critical points (4/3,−5/7), we have D > 0 and fxx < 0. So (4/3,−5/7) is a local
maximum.

Remark. Notice that D didn’t depend on any point (a, b) (nor did fxx). When this happens
that doesn’t mean that every point is a local maximum—that would mean our function is
constant! The second derivative test applies only to critical points.

The previous example was a convenient one, but sometimes finding the critical points re-
quires a little more algebraic finesse.

Example 2. Let h be a function whose first order partial derivatives are

hx = −2x + y and hy = x− 9

32
y3.

Find and classify the critical points of h.
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Solution. We’re already given the first-order partials, setting each of them equal to 0:

0 = −2x + y

2x = y (1)

and

0 = x− 9

32
y3

x =
9

32
y3 (2)

Since we know from (1) that y = 2x, we can substitute this into (2) and then solve for x this
way:

x =
9

32
(2x)3

x =
9

32
· 8x3

0 =
9

4
x3 − x

0 = x

(
9

4
x2 − 1

)
This gives one solution of x = 0, and for the other we have

0 =
9

4
x2 − 1

1 =
9

4
x2

4

9
= x2

±2

3
= x.

So we have critical points at x = 0, x = 2/3 and x = −2/3. We still need to find the y-values
at these points, and for this we use (1). Plugging these x-values in, we find our three critical
points: (0, 0), (2/3, 4/3) and (−2/3,−4/3).

Next we need to calculate the second partial derivatives and use the SDT.

fxx = −2

fyy = −27

32
y2

fxy = 1,

so

D = (−2)

(
−27

32
y2
)
− 12

=
27

16
y2 − 1.
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At each point:

(0, 0) : D = −1 < 0

(2/3, 4/3) : D =
27

16

(
4

3

)2

− 1 = 3 − 1 = 2 > 0

(−2/3,−4/3) : D =
27

16

(
−4

3

)2

− 1 = 3 − 1 = 2 > 0

So at (0, 0) we have a saddle point. And since fxx = −2 < 0, we see that (2/3, 4/3) and
(−2/3,−4/3) are both local maxima.

Example 3. Find and classify the critical points of the function

g(u, v) = 3u2v + 48uv + 4v2.

Solution. Calculating first partial derivatives:

gu = 6uv + 48v

gv = 3u2 + 48u + 8v.

Setting gu = 0,

0 = 6uv + 48v

0 = 6v(u + 8),

which tells us that either v = 0 or u = −8. If v = 0, setting gv = 0 gives

0 = 3u2 + 48u

0 = 3u(u + 16),

which tells us u = 0 or u = −16. This gives us two critical points of (0, 0) and (−16, 0). If
u = −8, setting gv = 0 gives

0 = 3(−8)2 + 48(−8) + 8v

0 = 192 − 384 + 8v

8v = 192

v = 24,

so our final critical point is (−8, 24). Now finding D in the SDT,

guu = 6v

gvv = 8

guv = 6u + 48.

So,

D = (6v)(8) − (6u + 48)2

D(0, 0) = 0 − 482 < 0

D(−16, 0) = 0 − (6(−16) + 48)2 < 0

D(−8, 24) = (6 · 24)(8) −
(
6(−8) + 48

)2
> 0

So (0, 0) and (−16, 0) are saddle points. Since D(−8, 24) > 0, we look at guu(−8, 24) = 6·24 > 0,
which tells us that (−8, 24) is a relative minimum.
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Example 4. Find and classify the critical points of the function

f(x, y) = 54x4 + 64x +
16

3
y3 − y + 2.

Solution. Again we start by calculating the first partial derivatives and setting them equal to
zero.

fx = 216x3 + 64

fy = 16y2 − 1.

Setting 216x3 + 64 = 0 gives x = −2/3, and setting 16y2− 1 = 0 gives y = ±1/4. Putting these
together gives us two critical points: (−2/3, 1/4) and (−2/3,−1/4). Next the second partial
derivatives:

fxx = 648x2

fyy = 32y

fxy = 0.

So then
D = 648x2 · 32y − 0.

Plugging in our critical points, we find D(−2/3, 1/4) > 0. Since fxx(−2/3, 4/3) > 0, this tells
us that (−2/3, 4/3) is a local minimum. And D(−2/3,−4/3) < 0 tells us that (−2/3,−4/3) is
a saddle point.
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