Overview

In the past two lessons we were concerned with finding maxima and minima of multivariate functions. A common type of problem is maximizing/minimizing a function given some constraint, for example minimizing surface area given a particular volume. For these types of questions there is a more methodical approach with the method of Lagrange multipliers.

Lesson

The basic setup for using Lagrange multipliers is that we are given a function f(x, y) subject to some constraint g(x, y) = k, and we want to maximize or minimize f with the given constraint. We'll first describe the method in full detail then see it in action with a few examples.

Method of Lagrange Multipliers. Suppose that $g_x(x, y)$ and $g_y(x, y)$ aren't both zero whenever g(x, y) = k. Then to find the maximum and minimum values of f(x, y) subject to the constraint g(x, y) = k (assuming that they exist), do the following.

1. Find all values x, y, and λ (λ is a real number) such that

$$f_x = \lambda g_x$$
$$f_y = \lambda g_y$$
$$g(x, y) = k$$

2. Evaluate f at every point (x, y) found in Step 1. The largest of these is the maximum value of f and the smallest is the minimum value.

Example 1. Find the maximum value of the function

$$f(x,y) = e^{8xy}$$

subject to the constraint $x^2 + y^2 = 100$. Assume both x and y are positive.

Solution. Here $g(x, y) = x^2 + y^2 = 100$. Using Lagrange multipliers, we have

$$f_x = 8ye^{8xy} = \lambda 2x = \lambda g_x \tag{1}$$

$$f_y = 8xe^{8xy} = \lambda 2y = \lambda g_y \tag{2}$$

$$g(x,y) = x^2 + y^2 = 100 \tag{3}$$

Solving (1) for λ , we get

$$\lambda 2x = 8ye^{8xy}$$
$$\lambda = \frac{4}{x}ye^{8xy}.$$

Note that we are allowed to divide by x because x > 0 by assumption (in particular, $x \neq 0$). Plugging this into λ in (2),

$$8xe^{8xy} = \lambda 2y$$

$$8xe^{8xy} = \frac{4}{x}ye^{8xy}2y$$

$$8x = \frac{8}{x}y^2$$

$$x^2 = y^2.$$

Now we use (3):

$$x^{2} + y^{2} = 100$$
$$x^{2} + x^{2} = 100$$
$$2x^{2} = 100$$
$$x^{2} = 50.$$

Since x and y are both positive (by assumption), $x^2 = y^2$ implies that x = y. Since we found that $x^2 = 50$, this means that xy = 50. Thus the maximum value of f is $e^{8\cdot 50} = e^{400}$.

Example 2. Find the points at which the minimum values of $f(x, y) = x^2 e^{y^2}$ subject to the constraint $4y^2 + 2x = 10$ occur.

Solution. We start by setting $f_x = \lambda g_x$ and $f_y = \lambda g_y$.

$$f_x = 2xe^{y^2} = 2\lambda \tag{4}$$

$$f_y = 2yx^2 e^{y^2} = 8y\lambda \tag{5}$$

Solving for λ in (4), we get $\lambda = xe^{y^2}$. Using this in (5),

$$2yx^{2}e^{y^{2}} = 8yxe^{y^{2}} \qquad (e^{y^{2}} \text{ is never } 0)$$

$$2yx^{2} = 8yx \qquad (y > 0 \text{ by assumption})$$

$$0 = 4x - x^{2}$$

$$0 = x(4 - x),$$

which gives us solutions of x = 0, x = 4. Since we are looking for where the minimum of f occurs, we can immediately see that it must be at x = 0. Since e^{y^2} is always positive, the smallest f can possibly be is 0, and f(0, y) = 0 for any y. Plugging this into g(x, y) = 10, for x = 0,

$$4y^{2} + 2 \cdot 0 = 10$$
$$y^{2} = \frac{5}{2}$$
$$y = \pm \sqrt{\frac{5}{2}}.$$

In case you're not convinced that we've already found where the minimum occurs, when x = 4, we must have

$$4y^{2} + 8 = 10$$

$$4y^{2} = 2$$

$$y^{2} = \frac{1}{2}$$

$$y = \pm \frac{1}{\sqrt{2}}$$

But $f(4, \pm 1/\sqrt{2}) > f(0, \pm \sqrt{5/2})$. Thus the minimum value occurs at $(0, \sqrt{5/2})$ and $(0, -\sqrt{5/2})$.

Example 3. Find the maximum of $f(x, y) = \ln(9xy^2)$ subject to the constraint $3x^2 + 8y^2 = 4$.

Solution. First we compute f_x and f_y and set them equal to λg_x and λg_y , respectively. Here $g(x,y) = 3x^2 + 8y^2$.

$$f_x = \frac{9y^2}{9xy^2} = \frac{1}{x} = 6\lambda x = \lambda g_x \tag{6}$$

$$f_y = \frac{18xy}{9xy^2} = \frac{2}{y} = 16\lambda y = \lambda g_y.$$

$$\tag{7}$$

We can solve (6) for λ by dividing both sides by x. Note that this is allowed since $x \neq 0$ as x = 0 would give $f(0, y) = \ln 0$. So $\lambda = \frac{1}{6x^2}$. Plugging this into (7),

$$\frac{2}{y} = 16\lambda y$$

$$\frac{2}{y} = 16\left(\frac{1}{6x^2}\right)y$$

$$12x^2 = 16y^2$$

$$x^2 = \frac{16}{12}y^2$$

$$x^2 = \frac{4}{3}y^2.$$

(8)

We can plug this into our constraint equation to get

$$3x^{2} + 8y^{2} = 4$$

$$3\left(\frac{4}{3}y^{2}\right) + 8y^{2} = 4$$

$$4y^{2} + 8y^{2} = 4$$

$$12y^{2} = 4$$

$$y^{2} = \frac{1}{3}$$

$$y = \pm \frac{1}{\sqrt{3}}.$$

Now using this in (8),

$$x^{2} = \frac{4}{3} \cdot \frac{1}{3}$$
$$x^{2} = \frac{4}{9}$$
$$x = \pm \frac{2}{3}.$$

But x = -2/3 is not possible since that would force us to take \ln of a negative number. Thus our solutions are $(2/3, 1/\sqrt{3})$ and $(2/3, -1/\sqrt{3})$. Notice that $f(2/3, 1/\sqrt{3}) = f(2/3, -1/\sqrt{3})$ since we're squaring y. So we have a maximum of $\ln\left(9 \cdot \frac{2}{3} \cdot \frac{1}{3}\right) = \ln 2$.

Example 4. Find the minimum value of $f(x, y) = x^2 + y^2$ subject to the constraint 5y = 5 - 2x.

Solution. Recall that in the method of Lagrange multipliers we need our constraint to be of the form g(x, y) = k. But this is no problem here since adding 2x to both sides of our constraint equation gives us g(x, y) = 2x + 5y = 5.

Setting $f_x = \lambda g_x$ and $f_y = \lambda g_y$,

$$f_x = 2x = 2\lambda = \lambda g_x \tag{9}$$

$$f_y = 2y = 5\lambda = \lambda g_y. \tag{10}$$

Right away in (9), we can see that $\lambda = x$. Plugging this into (10), we get

 $\begin{aligned} 2y &= 5\lambda \\ 2y &= 5x \\ y &= \frac{5}{2}x. \end{aligned}$

Plugging this into our constraint,

$$2x + 5y = 5$$
$$2x + 5\left(\frac{5}{2}x\right) = 5$$
$$\frac{4}{2}x + \frac{25}{2}x = 5$$
$$\frac{29}{2}x = 5$$
$$x = \frac{10}{29}.$$

Plugging this into our equation for y, we find $y = \frac{25}{29}$. Thus our minimum is

$$\left(\frac{10}{29}\right)^2 + \left(\frac{25}{29}\right)^2 = \frac{25}{29}.$$