
Lesson 3 MA 16020 Nick Egbert

Overview

In this lesson we devote our attention to the natural logarithm, written lnx.
Recall that ln is precisely the inverse function of ex. That is ex = y if and only
if ln y = x. There are several properties of logarithms that we should recall from
elementary algebra or precalculus.

• ln 1 = 0

• ln(ab) = ln a+ ln b

• ln
(
a
b

)
= ln a− ln b

• ln(ab) = b ln a

• y = lnx has domain (0,∞) and range (−∞,∞)

• (lnx)
′

= 1
x , which implies that lnx is always increasing on its domain.

• By the chain rule, for any u = u(x) (u is a function of x), we have that

(lnu)
′

= u′

u .

You should also be very familiar with the exponential ex. If you are rusty
on these properties, look at the Lesson 17 link for MA 158 (Fall 2016), or use
one of the many resources easily found via Google. One thing we should stress
is that when we see e by itself, that is just a number approximately equal to
2.71828. For example, if we ever see something like∫

e4 dx,

we should be thinking power rule, not exponential. And the result is e4x+ C.

Lesson

The problem at hand is the following. We want to be able to compute∫ x

1

1

t
dt =

∫ x

1

t−1 dt.

The natural guess is to apply the power rule, but that gets us in trouble as we
would obtain

1

−1 + 1
t−1+1 + C =

1

0
+ C,

which is undefined. It turns out that the function that arises as the antideriva-
tive is the natural log. So

lnx =

∫ x

1

1

t
dt.

Generally, we will need to throw on absolute values for the argument of ln
because of its domain restriction.
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Remark. We only want ot add the absolute value when necessary for answers
in Loncapa.

Example 1. Compute

I =

∫ √3π/2

√
π/2

2x cot(x2) dx.

Solution. The trick here is to write cotx2 in terms of sinx2 and cosx2. Remem-
ber that cotα = cosα

sinα . Thus

I =

∫ √3π/2

√
π/2

2x · cosx2

sinx2
dx. u = sinx2

=

∫ 1/
√
2

1

du

u
du = 2x cosx2 dx

= lnu
∣∣∣1/√2

1

= ln
1√
2
− ln 1

= ln
1√
2

The following example illustrates an important strategy in u-substitution
problems.

Example 2. Compute

I =

∫
9 cos (ln 9x)

x
dx.

Solution. Since we have just learned that
∫

1
x dx = lnx+C, it may be tempting

to use that somehow in this problem. But remember that our focus is to pick
a u whose derivative works out nicely. In some sense we do end up using that
fact as we want to pick

u = ln 9x

du =
1

x
dx.

Then

I = 9

∫
cos

(
ln 9x︸ ︷︷ ︸
u

)
· 1

x
dx︸ ︷︷ ︸
du

= 9

= 9

∫
cosu du

= 9 sinu+ C

= 9 sin(ln 9x) + C.
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Remark. We don’t need to put ln |9x| since ln 9x appeared in the original
function. That means that the original function had a domain of (0,∞), so the
domain of the antiderivative is unaffected.

Example 3. Compute

I =

∫
10

x1/3
(
7 + x2/3

) dx.
Solution. This problem requires a similar strategy to one we’ve seen before. The
only difference is the integral that we obtain in terms of u. For let

u = 7 + x2/3

du =
2

3
x−1/3 dx

3

2
du = x−1/3 dx.

Then

I = 10 · 3

2

∫
1

u
du

= 15

∫
du

u

= 15 ln |u|+ C

= 15 ln
∣∣∣7 + x2/3

∣∣∣+ C

= 15 ln
(

7 + x2/3
)

+ C.

Example 4. According to demographers, the population of Accident, Maryland
grew at a rate of

P ′(t) =
30et

10 + et
hundreds of people per year

from the time the town was established until its ironic accidental demise 7 years
later. If there were 6,000 people at the town’s inception, how many people lived
in Accident at the time of the accident?

Solution. The population P (t) is given by

P (t) =

∫
30et

10 + et
dt

= 30

∫
du

u
u = 10 + et

= 30 ln |u|+ C du = et dt

= 30 ln(10 + et) + C. (10 + et > 0 for all t)
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Now using that P (0) = 6000,

6000 = 30 ln(10 + e0) + C

C = 6000− 30 ln(11).

So
P (t) = 30 ln(10 + et) + 6000− 30 ln(11).

Now the question is simply asking what is P (7). Well,

P (7) = 30 ln(10 + e7) + 6000− 30 ln(11)

≈ 6138.

Example 5. Find the area of the region bounded by the curves

y =
3

2x ln
√
x
, x = e, x = e3, and y = 0.

Solution. We set up the integral as follows:

I =

∫ e3

e

3

2x ln
√
x
dx.

Unsurprisingly, this requires a u-substitution. Let u = ln
√
x. Then du = 1

2x dx.
Now

I = 3

∫ x=e3

x=e

du

u

= 3

∫ 3/2

1/2

du

u

= 3(lnu)
∣∣∣3/2
1/2

= 3

(
ln

3

2
− ln

1

2

)
= 3(ln 3− ln 2− (ln 1− ln 2))

= 3(ln 3− ln 2 + ln 2)

= 3 ln 3.
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