
Lesson 4 MA 16020 Nick Egbert

Overview

In this section we introduce integration by parts. So far our methods of integration include just
knowing an anti-derivative by memory and u-substitution. As we add this new method of integration
to our bag of tricks, we should still keep in mind the first two, and try them first, since they are
generally less complicated.

Lesson

We don’t have to look very hard before integrals become deceivingly difficult. Take for example∫
lnx dx.

The tempting solution is to say 1
x + C, but remember that 1

x is the derivative of lnx. To answer
this question, we need integration by parts. It’s actually not too bad to derive the formula on our
own; it requires little more than knowledge of the product rule for derivatives.

Consider u(x), v(x), two functions of x. Then the product rule tells us

d

dx
u(x)v(x) = u(x)v′(x) + v(x)u′(x).

Integrating both sides with respect to x, we get∫
d

dx
u(x)v(x) dx =

∫ [
u(x)v′(x) dx + v(x)u′(x)

]
dx

=

∫
u(x)v′(x) dx +

∫
v(x)u′(x) dx.

Recalling the fundamental theorem of calculus from first semester calculus, we see that the left hand
side of this equation is just u(x)v(x). To resolve the right hand side, we just need to know that by
definition, du = u′(x) dx and dv = v′(x) dx. Putting these facts together, we get

u(x)v(x) =

∫
u(x) dv +

∫
v(x) du.

Now solving for
∫
u(x) dv and then dropping the x’s to compactify notation, we get the integration

by parts formula. ∫
u dv = uv −

∫
v du

Now we should know how to find the anti-derivative for lnx.

Example 1. Compute ∫
lnx dx.

Solution. We pick

u = lnx dv = dx

du =
1

x
dx v = x
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Then ∫
lnx dx = x lnx︸ ︷︷ ︸

uv

−
∫

x · 1

x
dx︸ ︷︷ ︸∫

vdu

= x lnx−
∫

dx

= x lnx− x + C

How do we know what to choose for u and dv? Well, our choice for u should be something we
know the derivative of, and we should know the anti-derivative for dv. A useful guideline is the
acronym “LATE.” In general, we should try picking our u from this list, in the order which they
appear. whatever isn’t u should be dv.

• L: logarithmic

• A: algebraic (polynomials)

• T: trig

• E: exponential

After we do integration by parts, it may require a second, a third, or even more iterations
before we reach a final answer. It is important to work just one step at a time and be sure to use
parentheses when necessary to avoid making sign mistakes. It’s good mathematical practice to use
different letters when making new substitutions, but for your own scratch work, this is not absolutely
essential.

Example 2. Compute

I =

∫
x2 cos(5x) dx

Solution. We start by picking u and dv according to our guidelines.

u = x2 dv = cos(5x) dx

du = 2x v =
1

5
sin(5x)

Then we will immediately see that the same type of problem appears in our expression for
∫
v du.

We just keep repeating the process.

I =
x2

5
sin(5x)−

∫
2

5
x sin(5x) dx

s = x dt = sin(5x) dx

ds = dx t = −1

5
cos(5x)

=
x2

5
sin(5x)− 2

5

[
−x

5
cos(5x) +

1

5

∫
cos(5x) dx

]
=

x2

5
sin(5x)− 2

5

[
−x

5
cos(5x) +

1

5

(
1

5
sin(5x)

)]
=

x2

5
sin(5x) +

2x

25
cos(5x)− 2

125
sin(5x)
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As we have started to delve into a new section it is easy to have ourselves only consider the
new method for solving problems. It turns out this isn’t always the best practice. As we’ve seen
in the previous example, choosing u = x2 made us do integration by parts twice. Try the following
problem using parts, and you should find it requires three iterations, which is no fun. It turns out
using a two-step u-substitution, we can solve this problem fairly easily.

Example 3. Compute

I =

∫
9x3

√
6 + x2

dx

Solution. Let u = x2, then du = 2x dx, so that 1
2 du = dx. Now this should start to look like a

problem we’ve seen in previous lessons.

I = 9

∫
x2

√
6 + x2

x dx

=
9

2

∫
u√

6 + u
du

u = x2

du = 2x dx

=
9

2

∫
s− 6√

s
ds

s = 6 + u

ds = du

=
9

2

∫ (
s1/2 − 6s−1/2

)
ds

=
9

2

(
2

3
s3/2 − 12s1/2

)
+ C

= 3s3/2 − 54s1/2 + C

= 3(6 + u)3/2 − 54(6 + u)1/2 + C

= 3(6 + x2)3/2 − 54(6 + x2)1/2 + C.

Example 4. Compute

I =

∫
(t + 13)e20−t dt

Solution. There is nothing special about this example. We choose our u and dv according to our
guidelines, and should arrive at the solution quickly.

u = t + 13 dv = e20−t dt

du = dt v = −e20−t

I = (t + 13)(−e20−t)−
∫
−e20−t dt

= −(t + 13)e20−t − e20−t + C

The next example is only slightly more complicated, requiring a second iteration of integration
by parts.

Example 5. Compute

I =

∫
(5z2 + 3)e10z dz
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Solution. We pick our u and dv :

u = 5z2 + 3 dv = e10z dz

du = 10z v =
1

10
e10z dz

I =
1

10
(5z2 + 3)e10z −

∫
10z(

1

10
e10z) dz

=
1

10
(5z2 + 3)e10z −

∫
ze10z dz

s = z dv = e10z dz

ds = dz v =
1

10
e10z

=
1

10
(5z2 + 3)e10z −

(
z

10
e10z −

∫
1

10
e10z dz

)
=

1

10
(5z2 + 3)e10z − z

10
e10z +

1

100
e10z + C

=
1

100
e10z

(
50z2 − 10z + 31

)
+ C

Note. As always don’t forget your “+C”!
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