
Lesson 6 MA 16020 Nick Egbert

Overview

In this lesson we start our study of differential equations. We start by consider-
ing only exponential growth and decay, and in the next lesson we will extend this
idea to the general method of separation of variables. An important application
in this lesson is Newton’s Law of Cooling.

Lesson

In order to talk about differential equations, we need to know what such a thing
is. It turns out to be only slightly more complicated than what we are already
familiar with.

Definition 1. A differential equation is an equation that relates a function with
its derivatives.

If y is a function of t, an example of a differential equation would be

5y′ + 3yt = 7t2.

Notice that we can have factors of the independent variable t floating around
here. Today and the next two lessons we are only concerned with separable
equations.

Definition 2. A separable equation is a differential equation where we can get
all the y’s on one side and all the x’s on the other. The method of solving
separable equations is called separation of variables.

To see that this is only a minor extension of what we have learned thus far,
consider

y =

∫
ln t dt.

Differentiating both sides, we get

d

dt
y =

d

dt

∫
ln t dt

dy

dt
= ln t. (1)

So (1) is a differential equation. To solve this, we work backward to get a solution
of y = ln t+C. The extension in this lesson is that we will have something more
complicated than y = something, so we will have to solve for y.

Example 1. Find the general solution for the differential equation

dy

dx
= 14

x7 + 3

y2
.
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Solution.

y2
dy

dx
= 14(x7 + 3)

y2 dy = 14(x7 + 3) dx∫
y2 dy =

∫
14(x7 + 3) dx

1

3
y3 =

14

8
x8 + 42x+ C

y3 =
42

8
x8 + 126x+ C1

y = (
42

8
x8 + 126x+ C1)1/3

where C1 = 3C.

Before moving on to the next example we need to recall what it means to
be directly proportional.

Definition 3. If a, b, c are variables, then a is directly proportional to b means
that there is a constant k such that a = kb. Similarly, a is jointly proportional
to b and c if there is a constant k such that a = kbc.

Now we can apply what we have learned to exponential growth and decay.
A reasonable model for growth of populations or decay of radioactive material
is that the rate of growth (decay) is directly proportional to the amount at the
given time. Say we have a radioactive material whose amount is given by the
function A(t). Then using the definition above, we have that

dA

dt
= kA. (2)

Example 2. Americium-241 is a ubiquitous isotope of Am, and is probably
found in your household smoke detector. The half-life of 241Am is 432.2 years.
If your smoke detector has 4 micrograms of 241Am when you move into your
house, how much will remain when you pay off your 30-year mortgage?

Solution. Using (2) and the method of separation of variables,

dA

dt
= kA

dA = kAdt

dA

A
= k dt∫

dA

A
=

∫
k dt

ln |A| = kt+ C
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Since we can’t have a negative amount of 241Am, we can ignore the absolute
values. Now solving for C, we have

lnA(0) = ln 4 = k · 0 + C

ln 4 = C.

Next we want to solve for A to find the function A(t).

lnA = kt+ ln 4

A = ekt+ln 4

A = ekteln 4

A = 4ekt.

And using the fact that A(432.2) = 2 = 1
2A(0),

1

2
= ek(432.2)

ln
1

2
= k(432.2)

ln 1
2

432.2
= k

−0.0016038 ≈ k.

Putting this together, we find that A(t) = 4e−0.0016038t. Then we’re asked to
find A(3) = 4e−0.0016038·30 ≈ 3.8 µg.

Examples 1 and 2 illustrate two types of solutions. In Example 1, we found
a general solution, and in Example 2 we found a particular solution.

Definition 4. A general solution to a differential equation is an infinite number
solutions accounting for the addition of an arbitrary constant C. A particular
solution to a differential equation is a single solution, where we have determined
C using the given conditions. An initial value problem is a differential equation
where we find a particular solution given y(t0) (and perhaps y′(t0), y′′(t0), etc.).

Example 3. Find a particular solution to the given differential equation.

dy

dx
= 6x2e5y−x

3

Solution. Notice that

dy

dx
= 6x2e5y−x

3

= 6x2e5ye−x
2

, y(1) = 2.
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So this equation is separable, and

e−5y dy = 6x2e−x
3

dx∫
e−5y dy =

∫
6x2e−x

3

dx

−1

5
e−5y =

6

−3

∫
eu du

u = −x3

du = −3x2 dx

−1

5
e−5y = −2eu + C

−1

5
e−5y = −2e−x

3

+ C

−1

5
e−5·2 = −2e−1

3

+ C

−1

5
e−10 = −2e−1 + C

C = 2e−1 − 1

5
e−10.

Now solving for y,

−1

5
e−5y = −2e−x

3

+ 2e−1 − 1

5
e−10

e−5y = 10e−x
3

− 10e−1 + e−10

−5y = ln
(

10e−x
3

− 10e−1 + e−10
)

y = −1

5
ln
(

10e−x
3

− 10e−1 + e−10
)
.

In the next example, we will revisit the spirit of Example 5 of Lesson 1 where
we wanted to determine the time of death. With our new knowledge we can
actually derive a formula like the one that was given in Lesson 1 using Newton’s
Law of Cooling.

Theorem 1 (Newton’s Law of Cooling). Given an object whose temperature
is a function of time, T (t) whose surroundings are a constant temperature, the
change in temperature of the object is directly proportional to the difference of
the temperature at time t of the object and the ambient temperature.

Ambient temperature just means the temperature of the surroundings. If we
represent this (constant) number with TA, then Newton’s Law of Cooling says

dT

dt
= k(T − TA). (3)

Example 4. You arrive at a crime scene at 6:00 am and discover a body.
Crime scene investigators measure the body’s temperature to be 27◦C upon
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arrival, and an hour later the body’s temperature is 25◦C. During this time, the
temperature of the room was 22◦C. Assuming that the person a temperature of
37◦C when living, what was the time of death?

Solution. In this example, TA = 22. By Newton’s Law of Cooling (3), we have

dT

dt
= k(T − 22)

dT

T − 22
= k dt∫

dT

T − 22
=

∫
k dt

ln |T − 22| = kt+ C.

Since the temperature of the body can’t drop below the temperature of the
room (because science), we can remove the absolute value bars. Letting 6:00
am be t = 0, we know that T (0) = 27 and T (1) = 25. We use the former to
solve for C:

ln(27− 22) = 0 + C ⇒ C = ln 5.

Now we can use T (1) = 25 to solve for k.

ln(T − 22) = kt+ ln 5

T − 22 = ekt+ln 5

T = 22 + 5 ln ekt

T (1) = 25 = 22 + 5 ln ek

3 = 5ek

ln
3

5
= k.

Putting this together,
T (t) = 22 + 5et ln

3
5

At the time of death we know that T = 37, so we need to solve for t.

37 = 22 + 5et ln
3
5

15 = 5et ln
3
5

3 = et ln
3
5

ln 3 = t ln
3

5
ln 3

ln 3
5

= t

t ≈ −2.15 h

= −2 h9 m.

So the time of death was 2 hours and 9 minutes ago, 3:51 am.
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Example 5. Find a particular solution to the differential equation (n is a
constant)

y′ = 6xn, y(1) = 3.

Solution. We need to separate this problem into two cases: n = −1 and n 6= −1.
If n 6= −1, then

dy

dx
= 6xn

dy = 6xn dx∫
dy =

∫
6xn dx (∗)

y =
6

n+ 1
xn+1 + C.

Solving for C is straightforward, y(1) = 3 should give C = 1
2 . So a particular

solution in this case is

y =
6

n+ 1
xn+1 + C.

If n = −1, however, we can’t use the power rule. Our work up to (∗) above
remains the same. Now ∫

dy =

∫
6x−1 dx

y = 6 ln |x|+ C.

And y(1) = 3 gives us C = 3. So a particular solution in this case is

y = 6 ln |x|+ 3.
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