
Lesson 9 MA 16020 Nick Egbert

Overview

In this lesson we move on from separable equations to another type of differential equation,
namely first-order linear differential equations. We already know what a differential equation
is. First-order just means that only the first derivative appears (so no y′′, y′′′, etc). Linear
means that y′ and y are not multiplied together in any combination. For example y′+ ty =
t2 + 6 is linear, but yy′ + y = 1 and y′ + y2 = 3t is not linear. So how do we solve such
equations?

Lesson

If we are given a first-order linear equation, we can get it in the following form

y′ + p(t)y = q(t). (1)

Why do we want it in this form? Well, if we let µ(t) = e
∫
p(t) dt then and multiply both

sides of (1) by µ(t), we get

y′e
∫
p(t) dt + e

∫
p(t) dtp(t)y = e

∫
p(t) dtq(t). (2)

But the left hand side of (2) is precisely what we get if we computed d
dt

(
ye

∫
p(t) dt

)
using

the product rule. So then we can rewrite (2) as(
ye

∫
p(t) dt

)′
= e

∫
p(t) dtq(t)

(yµ(t))
′

= µ(t)q(t),

where in the second line we just used our definition of µ(t). Now integrating both sides, by
the fundamental theorem of calculus, on the left hand side we’ll just get yµ(t) :∫

(yµ(t))
′
dt =

∫
µ(t)q(t) dt

yµ(t) =

∫
µ(t)q(t) dt+ C. (3)

Definition. The term µ(t) is called an integrating factor.

To summarize:

Given an equation of the form

y′ + p(t)y = q(t),

a solution is given by

yµ(t) =

∫
q(t)µ(t) dt,

where µ(t) = e
∫
p(t) dt.

1



Lesson 9 MA 16020 Nick Egbert

How to solve first order linear equations

So the procedure goes as follows. In the wild we may come across a differential equation
that looks like

a(t)y′ + b(t)y = c(t).

Then we

1. Divide everything by a(t) provided that a(t) 6= 0. This gives

y′ +
b(t)

a(t)
y =

c(t)

a(t)
,

which is in the same form as (1).

2. Find the integrating factor by computing µ(t) = e
∫
p(t) dt, where p(t) = b(t)

a(t) .

3. Plug in the µ(t) you found into (3), where q(t) = c(t)
a(t) .

4. Integrate!

5. Divide both sides of the equation you have by µ(t).

Remark. In this discussion we have used t’s for the independent variable, but by
this point we should be comfortable swapping t out for x or any other letter we want.
Just be sure whatever the variable is in the problem that you stick with that variable.

Now let’s see this in action with a few examples.

Example 1. Find a general solution to the differential equation

dy

dx
+

5

x
= −2x+ 5.

Solution. Here our p(x) = 5
x and q(x) = −2x+ 5. So, assuming x > 0,

µ(x) = e
∫

5
x dx = e5 ln x = eln x

5

= x5.

Then we find a general solution by

yx5 =

∫
(−2x+ 5)x5 dx

yx5 =

∫ (
−2x6 + 5x5

)
dx

yx5 = −2

7
x7 +

5

6
x6 + C

y = −2

7
x2 +

5

6
x+

C

x5
.
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Remark. In the above example we assumed that x > 0. Why is this an okay as-
sumption? Well, we know we can’t have x = 0 since 5

x appears in the differential
equation. As you could check by using µ(x) = −x5, the only thing that would change
in our final answer is we would get −C/x5. But since C is just an arbitrary constant,
we can just relabel −C as C.

Example 2. Find the particular solution to the following initial value problem.

t2y′ + ty = 6, y(1) = 4

Solution. Here p(t) = 1
t , and here we know t > 0 since y(1) = 4. So

µ(t) = e
∫

1
t dt = eln t = t.

So

yt =

∫
t · 6

t2
dt

yt =

∫
6

t
dt

yt = 6 ln |t|+ C

y =
6

t
ln |t|+ C

t
.

Using y(1) = 4, we find that C = 4. So the general solution is

y =
6

t
ln |t|+ 4

t
.

Example 3. Find a general solution to the differential equation

y′ − y = 19.

Solution. Here p(x) = −1, so µ(t) = e−x. And the general solution is given by

ye−x =

∫
19e−x dx

ye−x = −19e−x + C

y = −19 + Cex.

Remark. The previous example is also a separable equation, so we could have solved
it using separation of variables as well.

Example 4. For −π2 < x < 0, find a general solution to the differential equation

y′ + y cotx = 7 cscx. (∗)
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Solution. Here p(x) = cotx. So

µ(x) = e
∫
cot x dx.

How do we compute
∫

cotx dx? Recall that this is a simple u-substitution once we rewrite
cotx = cos x

sin x . We let u = sinx so du = cosx dx. So∫
cotx dx =

∫
ln |sinx| .

Combining this with (∗), we have

µ(x) = ln |sinx| .

But we don’t really like absolute values; can we get rid of them? Yes! on the interval
−π < x < 0, sinx < 0. So on this interval |sinx| = − sinx. So µ(x) = − sinx. From here it
should be more straightforward.

−y sinx =

∫
−7 sinx cscx dx

−y sinx =

∫
−7 dx sinx cscx = 1

−y sinx = −7x+ C

y = 7x cscx+ C cscx.

Notice that we can keep the “+C” since we don’t care what C is, so we can replace C by
−C.
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