
Lesson 15 MA 16020 Nick Egbert

Overview

In this lesson we discuss improper integrals. These include integrals which have infinite
bounds or discontinuities at one of the bounds. This lesson also serves as a reminder that
infinity is not a number and we cannot simply “plug in” ∞ into something.

Lesson

As we mentioned there are two types of improper integrals. We define Type 1 in the following
way, provided that the necessary limits exist.

∫ ∞
a

f(x) dx = lim
N→∞

∫ N

a

f(x) dx∫ b

−∞
f(x) dx = lim

N→∞

∫ b

N

f(x) dx∫ ∞
−∞

f(x) dx =

∫ a

−∞
f(x) +

∫ ∞
a

f(x) dx

(1)

(2)

(3)

We say that the improper integral converges (or is convergent) if the limit on the right hand
side in (1), (2) and (3) exists and is finite. Otherwise we say the integral diverges (or is
divergent).

Remark. Computing improper integrals involves computing limits. We don’t have to ven-
ture to far into the wild before finding limits that are difficult to compute, but recall that
one strategy is L’Hôpital’s Rule involving indeterminate forms. Recall that indeterminate
forms include ∞−∞, ∞∞ ,

0
0 , 0 · ∞.

L’Hôpital’s Rule states that if we have functions f(x) and g(x) and

lim
x→c

f(x)

g(x)
=
∞
∞

or
0

0
,

then if

lim
x→c

f ′(x)

g′(x)
(4)

exists, then the limit in (4) is equal to the original limit.

Let’s look at a few examples of Type 1.

Example 1. Evaluate
∫∞
1

1
x dx.
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Solution. Just starting from the definition (1),∫ ∞
1

1

x
dx = lim

N→∞

∫ N

1

1

x
dx

= lim
N→∞

lnx

∣∣∣∣N
1

= lim
N→∞

(lnN − ln 1)

= lim
N→∞

lnN − lim
N→∞

ln 1

= lim
N→∞

lnN

=∞.

Thus the integral diverges.

Example 2. Evaluate
∫∞
1

1
x2 dx.

Solution. The setup here looks quite similar, but this one actually converges!∫ ∞
1

1

x2
dx = lim

N→∞

∫ N

1

x−2 dx

= lim
N→∞

− 1

x

∣∣∣∣N
1

= lim
N→∞

(
− 1

N
− (−1)

)
= lim
N→∞

− 1

N
+ 1

= 1.

Fun Fact. For a real number p, the integral
∫∞
1

1
xp dx converges if p > 1 and diverges if

p ≤ 1.

Example 3. Evaluate ∫ ∞
1

12
8
√
x3

dx.

Solution. We could rewrite the integral as
∫∞
1

12
x3/8 dx. Then by the Fun Fact, we know

right away that this integral diverges. Without knowledge of the Fun Fact though, we
would proceed just as in Example 2.∫ ∞

1

12

x3/8
dx = lim

N→∞

∫ N

1

12

x3/8
dx

= lim
N→∞

12 · 8
5

x5/8
∣∣∣∣N
1

= lim
N→∞

96

5

(
x5/8 − 1

)
=∞.
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Example 4. Evaluate ∫ ∞
1

5(x− 1)e−5x dx

Solution. We should recognize that this one requires integration by parts. Let’s pick

u = 5(x− 1) dv = e−5x dx

du = 5 v = −1

5
e−5x

Then the integral is

lim
N→∞

[
5(x− 1) · −1

5
e−5x −

∫ N

1

5 · −1

5
e−5x

]N
1

= lim
N→∞

−(x− 1)e−5x − 1

5
e−5x

∣∣∣∣N
1

= lim
N→∞

1− x
e5x

− 1

5e5x

∣∣∣∣N
1

= lim
N→∞

(
1−N
e5N

− 1

5e5N

)
−
(

0− 1

5e5

)
(∗)

To finish computing the limit in (∗), we need notice that we have an indeterminate form,
and apply L’Hôpital’s Rule:

lim
N→∞

(
1−N
e5N

− 1

5e5N

)
= lim
N→∞

−1

5e5N
− 1

5e5N

= 0− 0

= 0.

Notice that we only applied L’Hôpital to the first part. The second part we could already
see to be zero. Using this in (∗), we see that the integral is equal to 1

5e5 .

Of course calling the previous examples “Type 1” suggests that there is a Type 2. These
ones are seemingly more innocent. We define them as follows. Suppose f is continuous on
the interval [a, b) and discontinuous at b. Then we define

∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx,

provided that the limit exists and is finite. Similarly, if f is continuous on the interval (a, b]
and discontinuous at a, then we define the integral

∫ b

a

f(x) dx = lim
t→a+

∫ b

t

f(x) dx,

again, provided that the limit exists and is finite.
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Example 5. Evaluate ∫ 1

0

lnx dx.

Solution. Notice that lnx is continuous on the interval (0, 1] but discontinuous at 0, so
this is an improper integral. Recall that we can compute the antiderivative for lnx using
integration by parts with u = lnx and dv = dx, or simply remember it to be x lnx−x after
so many times of doing it. Then∫ 1

0

lnx dx = lim
t→0+

∫ 1

t

lnx dx

= lim
t→0+

(x lnx− x)

∣∣∣∣1
t

= lim
t→0+

[(1 ln 1− 1)− (t ln t− t)]

= lim
t→0+

[−1− (t ln t− t)] . (∗)

Now the problem is limt→0+ t ln t gives 0 · ∞, an indeterminate form. But we can employ
L’Hôpital with the following trick

lim
t→0+

t ln t = lim
t→0+

ln t

1/t

LH
= lim

t→0+

1/t

−1/t2

= lim
t→0+

(−t) = 0.

Now it should be easy to see that the limit in (∗) is simply −1.

Example 6. Evaluate ∫ π/2

0

tan θ dθ.

Solution. Again we have a continuity problem at one of the bounds, namely π
2 .∫ π/2

0

tan θ dθ = lim
t→π/2−

∫ π/2

0

tan θ dθ

= lim
t→0+

∫ t

1

−du
u

u = cos θ

du = − sin θ dθ

= lim
t→0+

∫ 1

t

du

u

= lim
t→0+

lnu

∣∣∣∣1
t

= lim
t→0+

[ln 1− ln t]

=∞.

Thus the integral diverges. When we made our u-substitution, it should be clear why we
went from t → π/2 to t → 0. But why did the direction from which we were approaching
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change? If you think about approaching π/2 from the right along cos θ, all the y-values
for cos θ are positive. So we are approaching 0 from positive values, i.e., approaching 0
from the right. Alternatively, if this was unclear we could have immediately started with a

u-substitution:
∫ π/2
0

tan θ dθ =
∫ 1

0
du
u and then proceed with that improper integral.

Example 7. Evaluate ∫ 14

−2

dx
4
√
x+ 2

.

Solution. This one requires little more than a u-substitution to solve pretty handily (u =
x+ 2 if you wish). ∫ 14

−2

dx
4
√
x+ 2

=

∫ 14

−2
(x+ 2)−1/4 dx

= lim
t→−2+

∫ 14

t

(x+ 2)−1/4 dx

= lim
t→−2+

4

3
(x+ 2)3/4

∣∣∣∣14
t

= lim
t→−2+

4

3

[
(16)3/4 − (t+ 2)3/4

]
=

4

3
(16)3/4

=
32

3
.
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