Overview

In this lesson we discuss higher order partial derivatives. If you know how to compute a partial derivative, you know how to compute any number of them.

Lesson

The key to this lesson is really more behind-the-scenes for this course. But just as we can talk about second derivatives in one-variable, we can talk about the second partial derivatives of a multivariate function. The main difference is that there are more possibilities since we can mix partials (first do x then y or vice versa). Let's start with the notation.

Notation. To denote the second partial derivative with respect to x, we write

$$\frac{\partial^2}{\partial x^2}$$
 or f_{xx} .

Similarly for the second partial derivative with respect to y. To denote the partial derivative with respect to y then with respect to x, we write

$$\frac{\partial^2}{\partial x \partial y}$$
 or f_{xy}

The behind-the-scenes thing is the following theorem.

Theorem. If given z = f(x, y) has that f_{xx} , f_{yy} , f_{xy} and f_{yx} are all continuous, then

 $f_{xy} = f_{yx}$

What this amounts to is that it doesn't matter what order we take our mixed partial derivatives in. As a result, we will just write f_{xy} for both taking the partial with respect to x first and with respect to y first.

Example 1. For the function $f(u, v) = 7u \ln(6uv) - 8u^2$, compute f_{uu} .

Solution. To do this we need to first compute f_{uu} . If we write $\ln(6uv) = \ln 6 + \ln u + \ln v$, it should be clear that $\frac{\partial}{\partial u} = \frac{1}{u}$.

$$f_u = 7\ln(6uv) + 7u \cdot \frac{1}{u} - 16u$$

= $7\ln(6uv) + 7 - 16u$
$$f_{uu} = \frac{7}{u} - 16$$

Example 2. Find the second partial derivatives for the given function.

$$f(x,y) = -\frac{3x\ln(3xy)}{4y}$$

Solution. We'll do this one using the product rule by writing $f(x, y) = -3x(4y)^{-1}\ln(3xy)$. It will also be helpful to note that

$$\ln(3xy) = \ln 3 + \ln x + \ln y.$$
(1)

Now in order to compute f_{xx} , f_{xy} and f_{yy} , we will first need to find f_x and f_y . Starting with f_x , we note that $(4y)^{-1}$ is a constant, then use the product rule on the remaining terms.

$$f_x = (4y)^{-1} \left[-3\ln(3xy) + (-3x) \cdot \frac{1}{x} \right]$$
$$= (4y)^{-1} \left[-3\ln(3xy) - 3 \right]$$
$$= -\frac{3}{4}y^{-1}\ln(3xy) - \frac{3}{4}y^{-1}$$

To compute f_y we note that -3x is a constant and use the product rule on the remaining terms.

$$f_y = -3x \left[-4(4y)^{-2} \ln(3xy) + (4y)^{-1} \cdot \frac{1}{y} \right]$$
$$= -3x \left[-\frac{1}{4}y^{-2} \ln(3xy) + \frac{1}{4}y^{-2} \right]$$
$$= \frac{3x}{4}y^{-2} \ln(3xy) - \frac{3}{4}xy^{-2}$$

Now we can finally compute the second partials.

$$f_{xx} = -\frac{3}{4}y^{-1} \cdot \frac{1}{x}$$

= $-\frac{3}{4xy}$
$$f_{yy} = -\frac{6x}{4}y^{-3}\ln(3xy) + \frac{3x}{4}y^{-2} \cdot \frac{1}{y} + \frac{6}{4}xy^{-3}$$

= $-\frac{6x\ln(3xy)}{4y^3} + \frac{3x}{4y^3} + \frac{6x}{4y^3}$
= $\frac{9x - 6x\ln(3xy)}{4y^3}$
= $\frac{3x(2 - 3\ln(3xy))}{4y^3}$

Now to compute f_{xy} we can either look at f_x or f_y and take the other derivative. We'll take the y derivative of f_x .

$$f_{xy} = \frac{3}{4}y^{-2}\ln(3xy) - \frac{3}{4}y^{-1} \cdot \frac{1}{y} + \frac{3}{4}y^{-2}$$
$$= \frac{3\ln(3xy)}{4y^2} - \frac{3}{4y^2} + \frac{3}{4y^2}$$
$$= \frac{3\ln(3xy)}{4y^2}$$