
Lesson 35 MA 16020 Nick Egbert

Overview

This lesson covers the only application of the determinant that we care about in this class;
namely finding eigenvalues and eigenvectors. Here we stick to the 2 × 2 case, and in the
following lesson we will treat the 3× 3 case.

Lesson

Although we will only do computations in the 2× 2 case, we will give our definitions for any
n× n.

Eigenvalues and eigenvectors

Before we can define what an eigenvector is, we should clarify what we mean by vector. An
n-dimensional (column) vector is just an n×1 matrix. We could also talk about row vectors,
but we’ll stick with column vectors, so the word “column” will generally be omitted.

Now suppose we have An×n and v is an n-dimensional vector. If λ is a nonzero real
number such that

Av = λv, (1)

then λ is said to be an eigenvalue of A and v is the corresponding eigenvector. This means
that multiplying A by v just returns some multiple of v.

Finding eigenvalues

Our goal is to find what values λ are eigenvalues for a given A. We can rearrange (1) to
obtain

Av = λv

0 = λv −Av
0 = (λI −A) (2)

In the last line we factored out v. Since this is a matrix equation, we are left with λI instead
of just λ. (Recall that if we did the same thing with real numbers, we would have λ · 1. The
only difference is we can’t drop the I.)

Obviously, if v is the zero vector (just a vector of all 0s), then (2) is satisfied. We want
to find nontrivial solutions to (2), so we ignore this case. Notice that λI − A is a matrix.
As we discussed in a previous lesson, if λI − A is invertible, we can multiply both sides of
the equation by (λI −A)−1. But this gives v = (λI −A)−1 = 0, which is precisely what we
said we wanted to avoid.

This means that if we are going to find any nontrivial solutions to (2), it must be that
λI −A is not invertible. As we discovered in the previous lesson, this happens exactly when
det(λI −A) = 0. It turns out that det(tI −A) is always a polynomial of degree n, and it is
called the characteristic polynomial of A.

To find the eigenvalues for A, we find all solutions t = λ to the polynomial equation

det(tI −A) = 0.
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Remark. As a convention, we will reserve λ to be solutions to the equation
det(tI −A) = 0, and the t will serve as the variable. As there will often by more
than one solution, we’ll mark different solutions with subscripts, e.g. λ1, λ2.

Example 1. Find the eigenvalues of the matrix A =

[
−4 −2
10 8

]
.

Solution. We start by computing the characteristic polynomial of A.

det(tI −A) =

∣∣∣∣[t 0
0 t

]
−
[
−4 −2
10 8

]∣∣∣∣
=

∣∣∣∣ t+ 4 2
−10 t− 8

∣∣∣∣
= (t+ 4)(t− 8)− (2)(−10)

= t2 − 4t− 32 + 20

= t2 − 4t− 12

= (t+ 2)(t− 6)

Now we set det(tI−A) = (t+ 2)(t−6) = 0. This gives solutions of λ1 = −2 and λ2 = 6.

Example 2. Find the eigenvalues of the matrix A =

[
−19 40
−16 33

]
.

Solution. Again starting with the characteristic polynomial of A,

det(tI −A) =

∣∣∣∣[t 0
0 t

]
−
[
−19 40
−16 33

]∣∣∣∣
=

∣∣∣∣ t+ 19 −40
16 t− 33

∣∣∣∣
= (t+ 19)(t− 33) + 640

= t2 − 14t+ 13

= (t− 1)(t− 13)

We immediately see that we have eigenvalues λ1 = 1 and λ2 = 13.

Finding eigenvectors

One style of question to ask about eigenvectors is just to verify whether a given set of vectors
has any eigenvectors. We do such an example.

Example 3. Which of the following are eigenvectors of

[
−7 6
−4 4

]
?

[
3
3

]
,

[
2
1

]
,

[
6
5

]
,

[
−3
−4

]
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Solution. Such a question is really easy to answer. We just need to test whether equation
(1) holds for each of the vectors above.[

−7 6
−4 4

] [
3
3

]
=

[
−3
0

]
[
−7 6
−4 4

] [
2
1

]
=

[
−8
−4

]
= −4

[
2
1

]
[
−7 6
−4 4

] [
6
5

]
=

[
−12
−4

]
[
−7 6
−4 4

] [
−3
−4

]
=

[
−3
−4

]
It’s rather easy to see that the first and third vectors are not eigenvectors. For the second
one, we can pull out a factor of −4 to see that [ 21 ] is an eigenvector with eigenvalue −4, and
clearly

[−3
−4

]
is an eigenvector with eigenvalue 1.

If we want to find the eigenvectors on our own, it involves solving a simple system of
equations. In order to find the eigenvectors of a matrix, we must first find the eigenvalues.

Example 4. Find the eigenvalues and the corresponding eigenvectors of the matrix

A =

[
0 −2
5 −7

]
.

Solution. We start as usual.

det(tI −A) =

∣∣∣∣[t 0
0 t

]
−
[
0 −2
5 −7

]∣∣∣∣
=

∣∣∣∣ t 2
−5 t+ 7

∣∣∣∣
= t(t+ 7) + 10

= t2 + 7t+ 10

= (t+ 2)(t+ 5)

This gives us λ1 = −2 and λ2 = −5 as our eigenvalues. Recall now what it means to be an
eigenvector and eigenvalue. Let’s say that v1 = [ xy ] is the corresponding eigenvector to λ1.
Then

(λ1I −A)v1 = 0

That is, we want to solve the matrix equation[
−2 2
−5 5

]
︸ ︷︷ ︸
λ1I−A

[
x
y

]
=

[
0
0

]
,

where all we’ve done is plugged λ1 = −2 into λ1I − A. Putting this equation into an
augmented matrix, we have [

−2 2 0
−5 5 0

]
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Now row reducing, we get[
−2 2 0
−5 5 0

]
− 1

2R1−−−−→
[

1 −1 0
−5 5 0

]
5R1+R2−−−−−→

[
1 −1 0
0 0 0

]
Since the column corresponding to y does not have a leading 1, it is a free variable. Set
y = t. then the first row tells us that x − t = 0, or x = t, so we have v1 = [ tt ]. But this is
really infinitely many vectors (for any choice of t). So we may pick any t that we wish, say

t = 1. Then λ1 = −2 has the corresponding eigenvector v1 =

[
1
1

]
.

We treat λ2 = −5 similarly. Plugging this into [tI −A | 0], we get[
−5 2 0
−5 2 0

]
−R1+R2−−−−−−→

[
−5 2 0
0 0 0

]
Again we are free to pick y = t. then the first row says −5x+ 2t = 0, or x = 2

5 t. So picking

t = 2 gives v2 =

[
5
2

]
corresponding to λ2 = −5.

Remark. There is nothing special about our choice of t. If you wanted, you could
choose t = 1 every time. Loncapa will accept any scalar multiple of v1 and v2 as they
would still satisfy the equation in (1).

Example 5. Find the eigenvalues and corresponding eigenvectors for the matrix

A =

[
−32 8
−4 1

]
.

Solution. We compute the characteristic polynomial of A.

det(tI −A) =

∣∣∣∣[t 0
0 t

]
−
[
−32 8
−4 1

]∣∣∣∣
=

∣∣∣∣t+ 32 −8
4 t− 1

∣∣∣∣
= (t+ 32)(t− 1) + 32

= t2 + 31t

This gives us eigenvalues of λ1 = 0 and λ2 = −31. Here we will illustrate how we could solve
the system of equations without using an augmented matrix. Finding v1, we have{

32x− 8y = 0
4x− y = 0

Using the second equation, we have y = 4x. Substituting this into the first equation gives
32x− 8(4x) = 32x− 32x = 0, which just tells us 0 = 0. This means we can pick x = t, then

y = 4t. So let’s pick t = 1 so v1 =

[
1
4

]
is the eigenvector for λ1 = 0. Similarly finding v2 we

have the system of equations {
x− 8y = 0

4x− 32y = 0
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We see that the second equation is a multiple of the first equation (we could have observed
this when finding v1 as well). The first equation tells us x = 8y, so we are free to pick y = 1,

then x = 8. So v2 =

[
8
1

]
corresponds to eigenvalue λ2 = −31.
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