Overview

This lesson covers the only application of the determinant that we care about in this class; namely finding eigenvalues and eigenvectors. Here we stick to the 2×2 case, and in the following lesson we will treat the 3×3 case.

Lesson

Although we will only do computations in the 2×2 case, we will give our definitions for any $n \times n$.

Eigenvalues and eigenvectors

Before we can define what an eigenvector is, we should clarify what we mean by vector. An n-dimensional (column) vector is just an $n \times 1$ matrix. We could also talk about row vectors, but we'll stick with column vectors, so the word "column" will generally be omitted.

Now suppose we have $A_{n \times n}$ and v is an *n*-dimensional vector. If λ is a nonzero real number such that

$$Av = \lambda v, \tag{1}$$

then λ is said to be an *eigenvalue* of A and v is the corresponding *eigenvector*. This means that multiplying A by v just returns some multiple of v.

Finding eigenvalues

Our goal is to find what values λ are eigenvalues for a given A. We can rearrange (1) to obtain

$$Av = \lambda v$$

$$0 = \lambda v - Av$$

$$0 = (\lambda I - A)$$
(2)

In the last line we factored out v. Since this is a matrix equation, we are left with λI instead of just λ . (Recall that if we did the same thing with real numbers, we would have $\lambda \cdot 1$. The only difference is we can't drop the I.)

Obviously, if v is the zero vector (just a vector of all 0s), then (2) is satisfied. We want to find nontrivial solutions to (2), so we ignore this case. Notice that $\lambda I - A$ is a matrix. As we discussed in a previous lesson, if $\lambda I - A$ is invertible, we can multiply both sides of the equation by $(\lambda I - A)^{-1}$. But this gives $v = (\lambda I - A)^{-1} = 0$, which is precisely what we said we wanted to avoid.

This means that if we are going to find any nontrivial solutions to (2), it must be that $\lambda I - A$ is not invertible. As we discovered in the previous lesson, this happens exactly when $\det(\lambda I - A) = 0$. It turns out that $\det(tI - A)$ is always a polynomial of degree n, and it is called the *characteristic polynomial* of A.

To find the eigenvalues for A, we find all solutions $t = \lambda$ to the polynomial equation

 $\det(tI - A) = 0.$

Remark. As a convention, we will reserve λ to be solutions to the equation $\det(tI - A) = 0$, and the *t* will serve as the variable. As there will often by more than one solution, we'll mark different solutions with subscripts, e.g. λ_1, λ_2 .

Example 1. Find the eigenvalues of the matrix $A = \begin{bmatrix} -4 & -2 \\ 10 & 8 \end{bmatrix}$.

Solution. We start by computing the characteristic polynomial of A.

$$det(tI - A) = \left| \begin{bmatrix} t & 0 \\ 0 & t \end{bmatrix} - \begin{bmatrix} -4 & -2 \\ 10 & 8 \end{bmatrix} \right|$$
$$= \left| \begin{array}{cc} t + 4 & 2 \\ -10 & t - 8 \end{array} \right|$$
$$= (t + 4)(t - 8) - (2)(-10)$$
$$= t^2 - 4t - 32 + 20$$
$$= t^2 - 4t - 12$$
$$= (t + 2)(t - 6)$$

- -

- -

. .

Now we set det(tI - A) = (t + 2)(t - 6) = 0. This gives solutions of $\lambda_1 = -2$ and $\lambda_2 = 6$. \Box

Example 2. Find the eigenvalues of the matrix $A = \begin{bmatrix} -19 & 40 \\ -16 & 33 \end{bmatrix}$.

Solution. Again starting with the characteristic polynomial of A,

$$det(tI - A) = \begin{vmatrix} t & 0 \\ 0 & t \end{vmatrix} - \begin{bmatrix} -19 & 40 \\ -16 & 33 \end{vmatrix} \end{vmatrix}$$
$$= \begin{vmatrix} t + 19 & -40 \\ 16 & t - 33 \end{vmatrix}$$
$$= (t + 19)(t - 33) + 640$$
$$= t^2 - 14t + 13$$
$$= (t - 1)(t - 13)$$

We immediately see that we have eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 13$.

Finding eigenvectors

One style of question to ask about eigenvectors is just to verify whether a given set of vectors has any eigenvectors. We do such an example.

Example 3. Which of the following are eigenvectors of $\begin{bmatrix} -7 & 6 \\ -4 & 4 \end{bmatrix}$?

$$\begin{bmatrix} 3\\3 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 6\\5 \end{bmatrix}, \begin{bmatrix} -3\\-4 \end{bmatrix}$$

Solution. Such a question is really easy to answer. We just need to test whether equation (1) holds for each of the vectors above.

$$\begin{bmatrix} -7 & 6\\ -4 & 4 \end{bmatrix} \begin{bmatrix} 3\\ 3 \end{bmatrix} = \begin{bmatrix} -3\\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -7 & 6\\ -4 & 4 \end{bmatrix} \begin{bmatrix} 2\\ 1 \end{bmatrix} = \begin{bmatrix} -8\\ -4 \end{bmatrix} = -4 \begin{bmatrix} 2\\ 1 \end{bmatrix}$$
$$\begin{bmatrix} -7 & 6\\ -4 & 4 \end{bmatrix} \begin{bmatrix} 6\\ 5 \end{bmatrix} = \begin{bmatrix} -12\\ -4 \end{bmatrix}$$
$$\begin{bmatrix} -7 & 6\\ -4 & 4 \end{bmatrix} \begin{bmatrix} -3\\ -4 \end{bmatrix} = \begin{bmatrix} -3\\ -4 \end{bmatrix}$$

It's rather easy to see that the first and third vectors are not eigenvectors. For the second one, we can pull out a factor of -4 to see that $\begin{bmatrix} 2\\1 \end{bmatrix}$ is an eigenvector with eigenvalue -4, and clearly $\begin{bmatrix} -3\\-4 \end{bmatrix}$ is an eigenvector with eigenvalue 1.

If we want to find the eigenvectors on our own, it involves solving a simple system of equations. In order to find the eigenvectors of a matrix, we must first find the eigenvalues.

Example 4. Find the eigenvalues and the corresponding eigenvectors of the matrix

$$A = \begin{bmatrix} 0 & -2\\ 5 & -7 \end{bmatrix}.$$

Solution. We start as usual.

$$\det(tI - A) = \begin{vmatrix} t & 0 \\ 0 & t \end{vmatrix} - \begin{bmatrix} 0 & -2 \\ 5 & -7 \end{vmatrix} \end{vmatrix}$$
$$= \begin{vmatrix} t & 2 \\ -5 & t+7 \end{vmatrix}$$
$$= t(t+7) + 10$$
$$= t^2 + 7t + 10$$
$$= (t+2)(t+5)$$

This gives us $\lambda_1 = -2$ and $\lambda_2 = -5$ as our eigenvalues. Recall now what it means to be an eigenvector and eigenvalue. Let's say that $v_1 = \begin{bmatrix} x \\ y \end{bmatrix}$ is the corresponding eigenvector to λ_1 . Then

$$(\lambda_1 I - A)v_1 = 0$$

That is, we want to solve the matrix equation

$$\underbrace{\begin{bmatrix} -2 & 2\\ -5 & 5 \end{bmatrix}}_{\lambda_1 I - A} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix},$$

where all we've done is plugged $\lambda_1 = -2$ into $\lambda_1 I - A$. Putting this equation into an augmented matrix, we have

$$\left[\begin{array}{rrrrr} -2 & 2 & 0 \\ -5 & 5 & 0 \end{array}\right]$$

Now row reducing, we get

$$\begin{bmatrix} -2 & 2 & | & 0 \\ -5 & 5 & | & 0 \end{bmatrix} \xrightarrow{-\frac{1}{2}R_1} \begin{bmatrix} 1 & -1 & | & 0 \\ -5 & 5 & | & 0 \end{bmatrix} \xrightarrow{5R_1+R_2} \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Since the column corresponding to y does not have a leading 1, it is a *free variable*. Set y = t. then the first row tells us that x - t = 0, or x = t, so we have $v_1 = \begin{bmatrix} t \\ t \end{bmatrix}$. But this is really infinitely many vectors (for any choice of t). So we may pick any t that we wish, say

t = 1. Then $\lambda_1 = -2$ has the corresponding eigenvector $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

We treat $\lambda_2 = -5$ similarly. Plugging this into $[tI - A \mid 0]$, we get

$$\begin{bmatrix} -5 & 2 & | & 0 \\ -5 & 2 & | & 0 \end{bmatrix} \xrightarrow{-R_1 + R_2} \begin{bmatrix} -5 & 2 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Again we are free to pick y = t. then the first row says -5x + 2t = 0, or $x = \frac{2}{5}t$. So picking t = 2 gives $v_2 = \begin{bmatrix} 5\\2 \end{bmatrix}$ corresponding to $\lambda_2 = -5$.

Remark. There is nothing special about our choice of t. If you wanted, you could choose t = 1 every time. Loncapa will accept any scalar multiple of v_1 and v_2 as they would still satisfy the equation in (1).

Example 5. Find the eigenvalues and corresponding eigenvectors for the matrix

$$A = \begin{bmatrix} -32 & 8\\ -4 & 1 \end{bmatrix}.$$

Solution. We compute the characteristic polynomial of A.

$$\det(tI - A) = \begin{vmatrix} t & 0 \\ 0 & t \end{vmatrix} - \begin{bmatrix} -32 & 8 \\ -4 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} t + 32 & -8 \\ 4 & t - 1 \end{vmatrix}$$
$$= (t + 32)(t - 1) + 32$$
$$= t^2 + 31t$$

This gives us eigenvalues of $\lambda_1 = 0$ and $\lambda_2 = -31$. Here we will illustrate how we could solve the system of equations without using an augmented matrix. Finding v_1 , we have

$$\begin{cases} 32x - 8y = 0\\ 4x - y = 0 \end{cases}$$

Using the second equation, we have y = 4x. Substituting this into the first equation gives 32x - 8(4x) = 32x - 32x = 0, which just tells us 0 = 0. This means we can pick x = t, then y = 4t. So let's pick t = 1 so $v_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ is the eigenvector for $\lambda_1 = 0$. Similarly finding v_2 we have the system of equations

$$\begin{cases} x - 8y = 0\\ 4x - 32y = 0 \end{cases}$$

We see that the second equation is a multiple of the first equation (we could have observed this when finding v_1 as well). The first equation tells us x = 8y, so we are free to pick y = 1, then x = 8. So $v_2 = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$ corresponds to eigenvalue $\lambda_2 = -31$.