Example 1. You have exactly 24 hours to study for a final exam worth 1000 points, and without preparation you will get 200 points. You wasted all your time earlier to determine that your exam score will improve x(38 - x) points if you read lecture notes for x hours and y(51 - y) points if you solve review problems for y hours, but due to fatigue from your last minute cramming, you will lose $(x + y)^2$ points. What is the maximum score you can obtain?

Example 2. You place a termite on a circular heated plate whose temperature is modeled by

$$f(x,y) = y^2 - x^2 + 5$$

degrees Celsius, where x and y are in meters from the center of the plate. The termite walks along just the outer edge of the plate, which has a radius of 7 meters. (It's an obscenely large plate). What is the warmest the termite could get traveling along this path?

Example 3. A fruit stand exclusively sells dragon fruit and guava. If the owner puts x pieces of dragon fruit and y guavas on the stand at the beginning of a day, it is estimated that he will make a profit of

$$P(x,y) = 5x^{3/2}y^{1/2}$$

dollars that day. If he can only put 130 total pieces of fruit on the stand per day, what is the maximum profit that the owner can make that day?

Example 4. You're at it again making rectangular boxes in your spare time. This time it has a square base, the material for the bottom costs \$7/sq. ft., the top costs \$4/sq. ft., and the sides cost \$3/sq. ft. Find the box of greatest volume that you can make for \$167. Note that buying a cheaper box on Amazon is not an option.

Example 1. You have exactly 24 hours to study for a final exam worth 1000 points, and without preparation you will get 200 points. You wasted all your time earlier to determine that your exam score will improve x(38 - x) points if you read lecture notes for x hours and y(51 - y) points if you solve review problems for y hours, but due to fatigue from your last minute cramming, you will lose $(x + y)^2$ points. What is the maximum score you can obtain?

Example 2. You place a termite on a circular heated plate whose temperature is modeled by

$$f(x,y) = y^2 - x^2 + 5$$

degrees Celsius, where x and y are in meters from the center of the plate. The termite walks along just the outer edge of the plate, which has a radius of 7 meters. (It's an obscenely large plate). What is the warmest the termite could get traveling along this path?

Example 3. A fruit stand exclusively sells dragon fruit and guava. If the owner puts x pieces of dragon fruit and y guavas on the stand at the beginning of a day, it is estimated that he will make a profit of

$$P(x,y) = 5x^{3/2}y^{1/2}$$

dollars that day. If he can only put 130 total pieces of fruit on the stand per day, what is the maximum profit that the owner can make that day?

Example 4. You're at it again making rectangular boxes in your spare time. This time it has a square base, the material for the bottom costs 7/sq. ft., the top costs 4/sq. ft., and the sides cost 3/sq. ft. Find the box of greatest volume that you can make for 167. Note that buying a cheaper box on Amazon is not an option.