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Introduction
One of the first tasks undertaken by Model Theory was to produce elimination

results, for example methods of eliminating quantifiers in formulas of certain structures.
In almost all cases those methods have been effective and thus provide algorithms for
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examining the truth of possible theorems. On the other hand, Gödel’s Incompleteness
Theorem and many subsequent results show that in certain structures constructive
elimination is impossible. The current article is a (very incomplete) effort to survey some
results of each kind, with a focus on the decidability of existential theories, and ask some
questions in the intersection of Logic and Number Theory. It has been written having
in mind a mathematician without prior exposition to Model Theory. Our presentation
will consist of four parts.

Part A deals with positive (decidability) results for analogues of Hilbert’s tenth
problem for substructures of the integers and for certain local rings.

Part B focuses on the ‘parametric problem’ and the relevance of Hilbert’s tenth
problem to conjectures of Lang.

Part C deals with the analogue of Hilbert’s tenth problem for rings of Analytic and
Meromorphic functions.

Part D is an informal discussion on the chances of proving a negative (or could it
be positive?) answer to the analogue of Hilbert’s tenth problem for the field of rational
numbers.

A central undecidability result in our presentation will be Hilbert’s 10th problem,
which asked:

Give a procedure which, in a finite number of steps, can determine whether a polyno-
mial equation (in several variables) with integer coefficients has or does not have integer
solutions.

The answer by Matiyasevich ([39]), following work of Davis, Putnam and J. Robin-
son, was negative (‘no such algorithm can exist’).

Analogous questions can be asked for domains other than the ring of integers. In
trying to ask questions, “similar” to Hillbert’s tenth problem (from now on denoted H10)
in rings other than the rational integers, one has to specify the kind of ‘diophantine
equations’ one considers. For example, say that we want to ask H10 for the ring
of polynomials C[z] in one variable, z, with complex coefficients. Let D be a class of
‘diophantine equations” over C[z], that is, polynomial equations in many variables, with
coefficients in C[z]. The analogue of H10 for this class is “does there exist an algorithm
to decide, given any equation in D, whether that equation has or does not have solutions
in C[z]?”. It is obvious that if one chooses D to be the set of all ‘diophantine equations’
over C[z] then the answer to the question is NO, simply because D is uncountable
(algorithms, in the classical sense, treat only countable problems). On the other hand,
one may take D to be the set of ‘diophantine equations’ which have coefficients in Z[z]
or in Z[i][z] (i =

√
−1) or in Z. Each of these choices gives a different ‘analogue of

H10 for C[z]’. In this paper we will be specifying D by specifying the language in
which we work. Notice that the analogue of H10 for C[z] for the class D, asked for
systems of diophantine equations (rather than single equations), is really the question
of decidability of the positive-existential theory of C[z] in the language L which contains
symbols for addition, multiplication, equality, and constant-symbols for the coefficients
of the equations of D (or constant-symbols whose interpretations generate exactly the
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set of coefficients of equations of D). For example, the analogue of H10 (for systems
of equations) for C[z] with D the set of equations with coefficients in Z is equivalent
to the question of decidability of the positive-existential theory of C[z] in the language
Lr = {+, ·; =; 0, 1}, while that with D the set of equations with coefficients in Z[z] is
equivalent to the question of decidability of the positive-existential theory of C[z] in
the language Lz = {+, ·; =; 0, 1, z}.

We will consider structures (models) such as the field C(z). Each structure comes
with a language, i.e. a set of symbols for the relations, functions and distinguished
elements of the structure. For example we consider C(z) as an Lz-structure, with
symbol for the relations =, the functions + (addition) and · (multiplication) and the
distinguished elements 0, 1 and z. The first order sentences of the language of the
structure are the sentences built using the symbols of the language, variables ranging
over th universe of the structure, quantifiers (∃ and ∀) and logical connectives, by the
usual rules. The existential (resp. positive-existential) sentences are those that start
with existential quatnifiers which are followed by a quantifier-free formula (resp. by a
quantifier-free formula which is a disjunction of conjunctions of relations - negations
of relations are not allowed in this case). The (full) theory (resp. existential theory,
positive-existential theory) of the structure is the set of sentences (resp. existential
sentences, positive-existential sentences) which are true in the structure.

We say that the theory (resp. existential theory, positive-existential theory) of a
structure is decidable if there exists an algorithm which determines whether any given
sentence (resp. existential sentence, positive-existential sentence) is true or false in the
structure - otherwise we say that the theory is undecidable.

We present a list of decidability properties of some structures of common use. The
first three lines contain substructures of the ring of rational integers, (Z,+, n→ 2n, 0, 1)
is the structure of Z with additon and the function n→ 2n and (Z,+, |, 0, 1) the struc-
ture of Z with addition and divisibility; the fourth line is the structure of addition and
divisibility in a ring OK of integers of the number field K - which is assumed not to
be imaginary quadratic; the positive-existential theories of those strucrtures have been
shown to be of the same hardness as the positive-existential thories of the correspond-
ing ring structures, but it is an open problem whether the latter are undecidable for
arbitrary K (see the comment below). In the first four lines the columns ‘ex. th.’ and
‘full th.’ show the decidability properties of the existential and the full theory of the
structure, respectively. The remaining structures are rings. Q is the field of ratiuonal
numbers, R the feld of real numbers, C the field of complex numbers, Fq is the finite
field with q elements, B[z] the ring of polynomials in the variable z with coefficients
in the ring B, B(z) the corresponding field of rational functions in z, H(D) the ring
of analytic functions of the variable z as that ranges in an open superset of the subset
D in the complex plane,M(D) is the corresponding field of meromorphic functions, U
is the open unit disk. LT is the language {+, ·; =; 0, 1} which, for rings of functions is
augmented by the predicate T which is interpreted as ‘x is not a constant function’.
For rings of functions of the variable z the language Lz is as above. The first column
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shows whether the positive existential theory of the ring in the language LT is decidable
or not (‘Y’ means decidable, ‘N’ means undecidable, ‘conj. N’ means ‘conjectured to
be undecidable’, ‘?’ denotes an open problem), the second column corresponds to the
similar properties in the language Lz and the third column to that of the full theory
in the language LT for the rings Z, OK and Q and the language Lz for the remaining
rings.

Note that it is known that the theories of many rings OK are undecidable (e.g.
for abelian K) and it has been conjectured that all of them are, but the question for
arbitrary K remains open.

ex. th. (in LT ) ex. th. in Lz full th.
(Z,+, 0, 1) Y Y

(Z,+, n→ 2n, 0, 1) Y Y
(Z,+, |, 0, 1) Y N

(OK ,+, |, 0, 1) conj. N N
Z N N
OK conj. N N

Q ? N
Fq[z],R[z],C[z] N N N

Fq(z) ? N N
R(z) ? N N
C(z) ? ? ?

H({a}) Y Y Y
H(U) Y ? N
H(C) ? ? N
M(U) Y ? ?
M(C) ? ? ?

For a fast introduction to applications of Model Theory to Algebra the reader may
consult [7] and [61]. The solution of H10 can be found in [13], and is explained very
nicely to the non-expert in [12]. Surveys of questions similar to the present paper’s are
[43], [47], [48] and [55]. Surveys of elimination (‘decidability’) techniques and results
can be found in [56] (and many later more specialized articles, from the Algebraist’s
point of view).

We are indebted to F. Campana, J. Demeyer and T. Scanlon for various comments
towards improvements of this paper.

1 Part A: Decidability results

For a quick introduction to a basic elimination technique, whose origin lies in the early
days of Model Theory, solve the following Exercise.
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Say that we work in a language L. A theory T (i.e. a subset of the set of formulas)
of L admits elimination of quantifiers if any L-formula φ(x) is equivalent in T to an
existential formula.

Exercise 1.1 (a) Let T be an L-theory. Assume that any formula of the form ∃y ψ(x, y),
where y is one variable, x is a tuple of variables and ψ is quantifier-free, is equivalent
in T to a quantifier-free formula. Prove that T admits elimination of quantifiers.

(b) Consider the field C of complex numbers as an Lr-structure. Consider a system
of polynomial equations

S(x, y) : ∧ifi(x) ∧ ∧jgj(x) 6= 0

where x is one variable, y = (y1, . . . , ym) and each yk is a variable, the indices i and
j range in some finites sets I and J respectively, and each fi and gi is a polynomial
in Z[x, y1, . . . , ym]. Prove that the formula ∃x S(x, y) is equivalent to a quantifier-free
formula.

[Hint: Use the theory of resultants (see any graduate book in Algebra) to do this in
the case that J = ∅, then do it in the case that both I and J are singletons.]

Conclude that the theory of C admits elimination of quantifiers. Observe that the
procedure of finding a quantifier-free formula, equivalent to a given formula, is effective.
Conclude that the theory of C is decidable, that is, there is an algorithm to determine
whether any given sentence of Lr is true or false in C.

1.1 Presburger arithmetic

A basic, old result is the decidability of Presburger arithmetic, i.e. the theory of the
ordered additive group of integers. Presburger showed that Z admits elimination of
quantifiers in a language which extends the language LP = {+,≥; 0, 1} with predicates
for a ≡ b mod m for every integer m (actually Presburger considered the theory of
natural numbers, not the integers, and in a language slighly different from LP : instead
of + it contained a function-symbol for the ‘successor function’ S(x) = x + 1; but the
expressive powers of these two languages are obviously the same).

Exercise 1.2 Show that the theory of Z in the language LP is ‘model-complete’ in the
following way:

(a) For each k ∈ N with k ≥ 2 define the one-place predicate Mk to mean ‘Mk(x)↔
x is a multiple of k’. Extend the language LP by the predicates Mk to obtain the lan-
guage LM

P .
(b) Observe that each quantifier-free formula of LM

P is equivalent to a finite disjunc-
tion of formulas of the form∧

i

(
fi(x̄) = 0

)
∧

∧
j

(
Mkj

(gj(x̄))
)
∧

∧
i

(
hi(x̄) ≥ 0

)
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where each fi and gj is a polynomial of degree 1 in the variables of the tuple x̄.
(c) Prove that each existential LM

P -formula, i.e. of the form ∃x̄ φ(x̄, ȳ) where φ(x̄, ȳ)
is quantifier free, is equivalent to a quantifier-free LM

P - formula. You can do this by
eliminating the existential quantifiers, one at a time. For example, to eliminate the
quantifier ∃x from

∃x[a− x ≥ 0 ∧ x ≥ b ∧M2(x+ c)]

(a, b and c can be polynomials in some variables and x does not occur in any of them)
observe that it is equivalent to the disjunction of the formulas that correspond to the
cases (A) a ≥ b+ 1, (B) a = b and b is even and c is even, and (C) a = b and a is odd
and c is odd.

(d) Fix a language and a theory. Assume that each existential formula is equivalent
(in the theory) to some quantifier-free formula. Then show that each formula of the
language have the same property (i.e. is equivalent to a quantifier-free formula).

One can ask how one can enrich the Presburger language LP and still retain decid-
ability for the existential theory of Z in this enriched language. Of course, as soon as
multiplication is definable from the functions and predicates in the language, one gets
undecidability. The bibliography on this subject is quite extensive. For some informa-
tion see [8] and the bibliography of [47]. Below we will see some results of this kind, as
well.

1.2 Addition and divisibility

The results we present are from [34], [35] and [36].
A natural extension of LP consists of adding a binary predicate for the divisibility

relation | (that is, a|b if and only if ∃c : b = ac). J. Robinson showed that multiplication
can be defined from addition and divisibility by a first-order formula and hence, the first-
order theory of Z in this language is undecidable. In contrast, Lipshitz, in [34] (and,
independently, Bel’tyukov) showed that the existential theory of Z in the language
L = LP ∪ {|} is decidable. The same is true for any ring of integers of an imaginary
quadratic extension of the rationals (in this case the predicate > has to be excluded
from the language). This result is optimal in several ways: multiplication is positive-
existential in the L|-theory of any ring of algebraic integers in a number field other than
the rationals and imaginary quadratic ([35] and [36]); hence the L|-existential-theory
of those rings has the same decidability property as the ring theory which has been
conjectured -by Denef and Lipshitz, but not yet proved - to be undecidable. These
results were later generalized to polynomial rings over fields: the existential theory
of addition and divisibility in a polynomial ring k[t] over a field k (in the language
L = LP ∪ {t, |}), is decidable if and only if the existential theory of k is decidable; the
positive existential theory of A[t1, t2] in the language L = LP ∪{t1, t2, |} is undecidable
for any commutative domain A.

We give a short account of the proof of [34]:
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Let L| = LP ∪ {|} where | will be interpreted by ‘a|b↔ ∃c[b = ac]’.

We say that a class of quantifier-free formulas ‘satisfies the local-to-global principle’
if it is satisfiable when and only when it is satisfiable in every completion of Z with
respect to a prime (including the ‘prime at infinity’). Observe that the quantifier-free
formulas of L| do not satisfy the local-to-global principle, e.g. x + 2|2x + 3 ∧ x ≥ 0 is
satisfiable in each completion (in each Qp and in R) but not in Z.

(a) Show that every existential sentence of L| is equivalent to a disjunction of for-
mulas of the form ∃xφ(x) where

φ(x) :
∧
i

(
fi(x)|gi(x)

) ∧
j

(
hj(x) ≥ 0

)
(1)

where each fi, gi and hj is a polynomial of degree at most 1 in the variables of the tuple
of variables x = (x1, . . . , xm). To do this one has to

(a1) Eliminate non-divisibilities: observe that ¬a|b is equivalent to ‘a greatest com-
mon divisor of a and b is different from a and −a’ which is equivalent to

∃s, x, y [s|a ∧ s|b ∧ a|x ∧ b|y ∧ s = x− y ∧ (6= s+ a = 0) ∧ (6= s− a = 0)] .

(a2) Eliminate equations, e.g. if the equation 2x − y = 0 occurs then one can
substitute all occurences of the variable x by y

2
, clear denominators by multiplying all

terms by 2, and add the divisibility 2|y.
In the rest work with notation as in (1).

(b) Impose all possible relative orderings on the variables of x, e.g. x1 ≥ · · · ≥ xm,
and all possible orderings on the terms fi, gi and hi. Each one of these cases gives a
sentence (the disjunction of all these is equivalent to the initial sentence). So assume
that 1 corresponds to such a sentence.

Draw conclusions that eliminate some variables, for example, if a divisibility x +
f(y)|x + g(y) occurs and x, x + f(y), x + g(y) ≥ 0 and the variable x is ≥ to all the

variables of the tuple y, then draw the conclusion that either x+g(y)
x+f(y)

is an integer ≤M+1

where M is the maximum absolute value of the coefficients of f −g (Exercise: Why?);
Consider the cases and eliminate the variable x (conclude with fewer variables).

(c) Impose certain ‘implied’ divisisbilities, foe example, from f1|f2 and f2|f3 conclude
that f1|f3 (and add it to the given list of divisibilities).

(d) Iterate (b) and (c). Show that a finite number of iterations concludes with
systems which are ‘diagonal’, in the sense that in each divisibility f |g there is a variable
that occurs in g, which is ‘bigger’ than all variables of f ; in addition these systems are
closed under the operations mentioned in (c).

(e) Show that diagonal systems satisfy the local-to-global principle. In fact show
that to each diagonal system φ(x) one can effectively associate a natural number N
such that φ(x) is satisfiable in Z if and only if it is satisfiable in each Qp with p ≤ N .
Then use the decidability of the theory of each Qp to conclude.
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Exercise 1.3 The following give some of the main ideas in [35].
Consider the ring of integers O of a real quadratic number field K (e.g. K =

Q(
√

5)). Consider known the following fact: There is a unit ε0 which is ‘fundamental’
i.e. all units of O are of the form ±εn0 with n ∈ Z.

(a) Show that if n|m in Z then εn0 − 1|εm0 − 1 in O.
It can be shown that a sort of converse is also true: There is a d ∈ Z such that

setting ε = εd0 we have that n|m in Z if and only if εn − 1|εm − 1 in O. For the rest
assume that one has in the language a name (constant-symbol) for a unit ε with these
properties and assume that the set {εn : n ∈ Z} is positive existential in the language
L| ∪ {ε} (all the mentioned facts are true).

(b) Assume that m,n 6= 0 and m 6= n. Show that εm = ε2n if and only if

εn − 1|εm − εn ∧ εm − εn|εn − 1 .

(c) Show: If x ∈ O\{0} then there is an n 6= 0 such that x|εn−1 (hint: if x is not a
unit then the ring O/(x) is finite, hence the natural image of ε has finite multiplicative
order).

(d) Let φ(x) denote the formula

x 6= 0 ∧ x 6= 1 ∧ x 6= −1 ∧ x|εn − 1 ∧ x− 1|εn − 1 ∧ x+ 1|εn − 1 .

Assume that if n 6= 0 and φ(x) is true then 2|x2| < εn (|w| is the absolute value of w).
Show: For x, y ∈ O \ {0, 1,−1} the following is true: y = x2 if and only if for some

n ∈ Z \ {0} we have

φ(x) ∧ φ(y) ∧ εn − x|ε2n − y .

(e) Consider known the following: The relation x 6= 0 is positive-existential in
L| ∪ {ε}.

Use (a)-(d) to produce a formula ψ(x, y) of L| ∪ {ε} such that for any x, y ∈ O the
following is true in O:

ψ(x, y)↔ y = x2 .

thus squaring over O is positive-existential in L| ∪ {ε}. Prove that this implies that
multiplication over O is positive-existential in L| ∪ {ε}. Conclude that the positive-
existential theory of L| ∪ {ε} is undecidable.

1.3 Addition and exponentiation

The following are results from [54].
The first-order theory of N in the language L = LP∪{exp2}, where exp2 the function

which sends a natural number n to 2n, is decidable.
Towards proving this, one has to study the behavior of ‘exponential polynomials’,

e.g. of the form 223x−1 − 25x+5 + 1. We will not go into the details.
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Exercise 1.4 Show that there is an algorithm which, given any diophantine equation
f(x) = 0 (x is a tuple of m variables and f a polynomial in x over Z), decides whether
that has or does not have solutions in the set {2n : n ∈ N}m.

Remark: By results of Lang the statement of the Exercise is true for any finitely
generated multiplicative (i.e. closed under multiplication) set, e.g. the set {2n3m :
n,m ∈ N}.

1.4 The analogue of Hilbert’s tenth problem for algebraic groups

The following (among several) result can be found in [28].

Theorem 1.5 There is an algorithm which, given any algebraic group G defined over
Z and any positive integer k, decides whether G contains a subgroup of index k.

Two examples of algebraic groups defined over Z are:

1. Z, Z× Z e.t.c. with the group structure of component-wise addition.

2. The solution set of the equation X2 − dY 2 = 1 where d is a square-free integer;
The group law ⊕ is defined by

(x1, y1)⊕ (x2, y2) = (x1x2 + dy1y2, x1y2 + x2y1) .

This justifies the claim that ‘the more structure one has, the more likely decidability
is’.

1.5 The results of Ax for ‘almost all primes’

In [1] Ax gave an algorithm which, for any given diophantine equation, tests whether
the equation has a solution modulo every prime number. In [2] he extended this to
an algorithm that decides the truth of a sentence of LR in all finite fields. The proofs
make use of Weil’s result on the congruence zeta function and of Čebotarev’s density
theorem.

For further results in this direction see [25] and [60].

1.6 Model-completeness

A set (subset of a power of Z or any effectively constructible countable set) is recursive
if memebership in it can be tested by an algoritm; it is recursively enumerable if its
elements can be listed (eventually all) by an algorithm.

A theory of a language (finite or countable-and-recursive) L is a subset of the set of
sentences of L. The theory of a structure (model) A in a language L is model-complete
if every formula of L is equivalent to an existential formula of L over A.
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The following is a classical decidability argument in Model Theory:
Assume:
(a) A is a countable and recursive structure in the countable language L.
(b) The theory of A in L is effectively model-complete, that is, there is an algorithm

which to any sentence of L associates an equivalent (over A) existential sentence.
Conclude: The theory of A in L is decidable.
Proof : Let σ be a sentence of L. Find an existential sentence, say ∃x φ(x), equivalent

to σ, and an existential sentence, say ∃y ψ(y), equivalent to ¬σ where x is a tuple of
m variables, y is a tuple of n variables and the formulas φ and ψ are quantifier-free.

Enumerate the tuples of m elements of A and the tuples of n elements of A. By
day plug in φ(x) tuples of m elements and check whether they make it true. By night
do similarly with ψ.

One of σ or ¬σ is true, hence either we will satisfy φ on a day (in which case σ is
true) or we will satisfy ψ on a night (in which case ¬σ is true). 3

Exercise 1.6 (a) Prove that if in a theory T every universal formula is equivalent to
an existential one then T is model-complete.

Consider the language L which extends the language of rings by a symbol ≥ for the
ordinary ordering relation. A polynomial (or rational function) f(x) in the m variables
x, with coefficients in R, is positive-definite if for all a ∈ Rm we have f(a) ≥ 0.

(b) Show that every positive-definite polynomial in one variable x is the sum of two
squares of polynomials of x with coefficients in R. (This admits a generalization to
m variables: A positive-definite rational function in m variables is equal to the sum
of 2m-many squares of rational functions; this is a positive answer to Hilbert’s 17-th
problem.)

(c) Use (b) to prove that if f(x) ∈ Z[x] and x is one variable then the universal
formula ∀x f(x) ≥ 0 is equivalent to an existential formula.

1.7 Complete theories

Suppose that T is a theory of the recursive language L. We say that T is complete if
for any sentence σ of L either σ or ¬σ is a consequence of T . Then one sees easily that

Theorem 1.7 Assume that T is a recursively enumerable and complete theory of the
recursive language L. Then there is an algorithm which tests any given sentence σ of
L for being or not being a consequence of T .

Exercise 1.8 Give an outline of a proof of the Theorem.

For example, the theory of algebraically closed fields of a fixed characteristic (the axioms
for a field, together with axioms which fix the characteristic, together with axioms which
state, for each n, “every polynomial of degree n has a zero”), which is known to be
complete, has a recursive set of consequences.
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Exercise 1.9 Describe in detail the latter theory.

The latter Theorem transforms the question of whether the set of consequences of
a given theory is decidable (i.e. recursive) to the question of whether the theory is
complete (whenever that is true). This is a very common approach in Model Theory
to decidability questions.

It is obvious that the latter Theorem may be not true if T is not complete. Examples
of this kind exist in the bibliography.

For relevant bibliography see [7].

1.8 Power-series and germs of analytic functions: existential
decidability and Artin approximation

The ring-theories of Qp (p is a prime number) are decidable (results of Nerode, Ax and
Kochen [3], Ershov [24], also cf. [38], [9], and [17]).

If F is a field of characteristic 0 then the ring-theory of the field of formal fractional
power series F ((T )) in one variable T (and that of F [[T ]]) is decidable ([32] and [65]).

But if T is two or more variables then we have undecidability ([14]).
For more relevant results see [5] and [20].
We wish to address the question of the decidability of the existential theory of a

ring Hz(D) of functions of a variable z, analytic on a set D (i.e. analytic on some
open super-set of D). We will address first the question for D =(a singleton), say
D = {0}). Already in [32] it was shown that the ring-theory of Hz({0}) is decidable.
But the techniques of that paper do not transfer to bigger D, so we will look into other
approaches. One approach is via ‘Approximation Properties’.

Definition 1.10 (i) Let R be a local ring and R̂ be its completion. We say that R has
the Approximation Property if every system of polynomial equations over R, which has
a solution in R̂, has a solution in R.

(ii) C{z1, ..., zq} is the ring of formal power series, in the variables z1, ..., zq over C,
which converge in some neighborhood of the origin.

(iii) Let k be a field. Then k〈z1, ..., zq〉 denotes the ring of formal power series in
z1, ..., zq over k which are algebraic over k[z1, ..., zq].

Artin proved:

Theorem 1.11 Let k be any field. The following two rings have the Approximation
Property:

(i) k〈z1, ..., zq〉 and
(ii) C{z1, ...zq}.

Theorem 1.12 Let k be an arbitrary field and z be a variable. Then, a system of
polynomial equations, with coefficients in k[[z]], has solutions in k[[z]] if and only if, for
any n ∈ N+, it has solutions modulo (z)n.
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By Theorem 1.11, a system of equations, with coefficients in C[z], has solutions in
Hz({0}) if and only if it has solutions in C〈z〉.
A much stronger version of Theorem 1.12, suitable for algorithmic computation of
solutions of equations, is true: for each system of equations, there is a constant N ,
depending on the system (actually: algorithmically computable and depending only on
the number of variables and the degrees of the involved polynomials), such that the
system has solutions in k[[z]] if and only if it has solutions modulo (z)N . Results of this
type occur in the literature under the name ‘Strong Approximation theorems’.

Strong Approximation implies decidability of the positive existential theory of k[[z]]
(in order to see whether a system of equations has solutions, compute the constant N
of the previous paragraph and check whether the system has solutions modulo (z)N).
But, since our main interest is to investigate the possibility of adapting our arguments
to Hz(D) for D not a singleton, and because there is no known analogue of Strong
Approximation for these rings, we will now present a decidability result, based only
on Theorems 1.11 and 1.12. We will show how one can use these Theorems in order
to detect whether a given system of polynomial equations, with coefficients in Q̃[z]
(z = (z1, ..., zn) and Q̃ denotes the algebraic closure of Q), has solutions over Hz({0}n).
Let such a system be given; by Theorem 1.11 it suffices to check whether the system
has solutions over C〈z〉. First, observe that if the system has solutions over C〈z〉
then it has solutions whose constant coefficients are algebraic numbers, that is, the
system has solutions over Q̃〈z〉. So, here is an algorithm that decides whether the
system has solutions over Hz({0}n): We run in parallel the following two processes.
The first process lists the tuples of Q̃〈z〉 and determines whether each one of them is
a solution. The second process determines whether the system has solutions modulo
zm for m = 1, 2... (observe that the reduction of the system modulo any zm reduces to
solving a new system over Q̃, which can be done by an algorithm, since the existential
theory of any algebraically closed field, such as Q̃, is decidable) . If the system has
solutions over Q̃〈z〉 then the first process will find them, eventually. If the system has
no solutions, then the second process will eventually find an m for which the system
has no solution modulo zm. We note that a similar algorithm works for systems of
algebraic differential equations (cf. [21]).

It is evident that, in the domains where one has analogues of Theorems 1.11 and 1.12,
one may expect decidability results, similar to the above. Unfortunately, analogues of
Theorem 1.12 in rings Hz(D), for D not a singleton, are not known. Theorem 1.11 has
been extended to the very general case of a regular ring (by Spivakovski). Surprisingly
perhaps, there is a similar result for compact domains D by van den Dries:

Theorem 1.13 Assume that D is a compact subset of C and denote by CD〈z〉 the ring
of functions on D, in the variable z, which are algebraic over C(z) and analytic on an
open superset of D. Let x = (x1, ..., xm), fi ∈ CD〈z〉[x]. Let ε > 0.
Assume that the system of equations

∧
i fi[x1, ..., xm] has a solution α = (α1, ..., αm) in

Hz(D). Then it also has a solution β = (β1, ..., βm) with βi ∈ CD〈z〉 and such that
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|β − α|∞ < ε where | · |∞ denotes the supremum norm on D.

It is easy to see that Theorem 1.11 reduces the question of decidability of the existential
theory of Hz(D), for D compact, to the similar question for the existential theory of
the ring of algebraic functions which are analytic on D. But the problem remains open:

Question 1.14 Is the existential theory of Hz(D) decidable for D = C? for D =(the
open unit disc)? for D =(the closed unit disc)?

In a later section we give more information on this problem.

1.9 Positive-existential versus existential

In some cases we do have a decision method for the positive-existential theory of a ring
but we do not know the similar result for the existential theory. Such is the case, for
example, for the power series ring Fp[[t]] where t is one variable.

In [22] it is shown that if there is Resolution of Singularities in positive characteristic
p then the positive-existential theory of Fp[[t]] is decidable.

Exercise 1.15 Prove that for any prime p ≥ 3 the set Fp[[t]] is positive-existentially
definable in the field Fp((t)) in the following way:

For any x ∈ Fp((t)), x ∈ Fp[[t]] if and only if

∃y[1 + tx2 = y2] .

Conclude that the existential theory of Fp[[t]] is decidable if and only if the positive-
existential theory of Fp((t)) is decidable.

A rough presentation of some ideas in the proof is the following:
Assume that V and Y are two affine varieties over Fp[[t]], each of which is given by

a finite set of polynomial equations. We want to decide whether the quasi-variety V \Y
has points rational over Fp[[t]].

Step 1: Reduce the problem to the one whether V has non-singular points, rational
over Fp[[t]]. This is done via the Hensel-Rychlic Lemma (a sort of formal analogue of
the Inverse Function Theorem for real functions).

Step 2: A Resolution of Singularities (RoS) of the variety V over the field Fp((t))
is a (not necessarily irreducible) non-singular variety W , together with a surjective
morphism f : W → V . A basic observation is:

Observation: If every variety over a countable recursive field K has RoS then that
is effective (that is, one can find a RoS).
This is done roughly as follows: List all possible pairs (W, f) and for each one of them,
in the order of enumeration, check whether f maps onto V (this can be done effectively
but we will not go into the details here). Since we have assumed that some RoS exists,
at some point we will find one.
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Existence of RoS is known (for any variety) over any field of zero characteristic (due
to Hironaka), but unknown in positive characteristic. In what follows we will assume
existence of RoS in characteristic p.

So assume that V has a RoS (W, f). The singular locus (set of singular points) of
V is mapped inversely by f to some components (in the sense of the Zariski topology)
of W . One subtracts those components from W (it can be shown that this can be done
effectively) to obtain a variety W0. Then the question whether V has non-singular
points over Fp[[t]] is equivalent to the question whether a certain closed (in the sense of
the natural topology of Fp[[t]]) of W0 has points over Fp[[t]]. It is easy to see that the
latter question is equivalent to asking whether a certain affine variety has points which
are rational over Fp[[t]]; The point here is that the phrases ‘W0 has points’ and ‘W0

has non-singular points’ are equivalent (since W0 is non-singular) - the same is true for
closed subsets of W0.

2 Part B: A qualitative analogue of HTP and the

Conjectures of S. Lang

We want to address the following

Question 2.1 Is there an algorithm which, given any variety V over Q, decides whether
V has infinitely many points over some number field K?

For example, due to the proof by Faltings of Mordell’s Conjecture, the question has a
positive answer for curves:
Any curve of geometric genus ≥ 2 has only a finite number of points over any given
number field K.

And it is known that curves of genus 0 or 1 have infinitely many points over some
number field K. Hence the algorithm is: Compute the genus of the curve V (the genus
is a geometric invariant and known to be computable). If it is ≤ 1 reply YES, otherwise
NO.

In [33] (and more extensively in [63] and from a different point of view in [6]) S.
Lang announced a number of conjectures, which, if true, would imply that varieties
that have infinitely many points over some number field are characterized by certain
geometric properties. As an example,

Conjecture 2.2 (Lang) Any hyperbolic variety has only a finite number of points over
any number field.

A variety V is hyperbolic if every complex analytic map f : C→ V is constant (this is
one of several equivalent definitions). For example, the (irreducible) curves (varieties
of dimension 1) that are hyperbolic are precisely those with geometric genus ≥ 2.

What are the implications of this for Question 2.1? If true, Conjecture 2.2 reduces
Question 2.1 to deciding whether a given variety has certain geometric properties. Some
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of those properties (e.g. genus) are known to be decidable; but some other properties
are not known (to be decidable or undecidable). As an example of the second kind (to
the best of the authors’ knowledge), we ask

Question 2.3 Is there an algorithm which, given a variety V over Q, decides whether
that is hyperbolic?

In the following sub-section we will address this question.
Even if the answer to it turns out to be positive, there still remain certain geometric

properties which have to be decidable if the answer to Question 2.1 is positive.
As we will see in the next sub-section, there is an undecidability result for some

type of ‘geometric problem’; but it is probably too early to conjecture that Question
2.1 has a negative answer.

Now we give a more precise account of the conjectures of Lang and Vojta. The main
notions involved are the following properties of an algebraic variety V , defined over Q
(or a number field):

1. V has only finitely many points over any number field.

2. V is hyperbolic (one of several equivalent definitions being that there is no non-
constant holomorphic map into V ).

3. V is Kobayashi hyperbolic. This means that V is hyperbolic and is, in addition,
equipped with a metric with some special properties ([33]).

4. V and all its subvarieties are of general type (a notion defined in terms of algebraic
geometry).

The union of the conjectures connecting these properties is that all four properties
are equivalent. The only part which has been proved is that property 3 (hyperbolic
varieties) is equivalent to property 4 (Kobayashi hyperbolic varieties); this is due to
Bondi. All the other equivalences are conjectures.

(We are indebted to Professor Campana for explaining to us some of the details for
these notions).

2.1 A language for geometric problems

When we study the decidability question for a ring of functions of one (or more) variable
z, we usually augment the language of rings by a name (constant-symbol) for z. This
has as a result that the varieties that we study have coefficients in Z[z] (or a bigger
ring) and are not invariant under even the most elementary geometric transformations,
for example z 7→ z + β with β in the base field (field of constant functions). Since we
want a language that does not have this defect, we define the languge

LT = {+, ·; =, T ; 0, 1}
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which augments the language of rings by the one-place predicate T , which will be
inerpreted by

T (x)↔ (the function x is not a constant) .

Notice that, given a variety V through a finite set of defining polynomials, the sentence
‘The variety V is hyperbolic’ can be expressed in LT over Hz(C).

We ask:

Question 2.4 Is the theory (resp. existential theory, positive-existential theory) of LT

over Hz(C) decidable? over C(z)? over C[z]?

The only known relevant results are given by the following two theorems:

Theorem 2.5 ([46]) The positive-existential theory in LT of a polynomial ring F [z]
over a field F is undecidable.

Theorem 2.6 ([52]) The existential theory in LT of the ring Hz(U) is decidable, where
U is either the open or the closed unit disc.

The analogous question for fields of rational functions and for Hz(C) are open.
An outline of proof of Rubel’s Theorem 2.6 is:
Let V be an affine variety defined over Q (or Q̃), defined by a finite set of equations

fi(X) = 0 (X = (X1, . . . , Xm) is a tuple of variables and fi ∈ Q[X]).
We want to determine whether V has points over Hz(U). We consider the system

of differential equations and in-equations

S : (∧ifi(X) = 0) ∧ (∧j
dXj

dz
6= 0) .

One examines S for solutions in a differentially closed field which extends Hz(U). This
is effective by results of Seidenberg. If the answer is negative then we are done: the
answer over Hz(U) is also negative. If the answer is positive, then, by a theorem of
Ritt, S has a solution X̄(z) such that each X̄i is analytic in a neighborhood of z = 0.
Substitute z by cz, for a suitable constant c to obtain the solution X̄(cz) (here we need
the fact that the fi are polynomials over Q, hence their coefficients do not involve z)
which is analytic on U .

2.2 A geometric problem

Let K be a number field. We consider the following problem:

Question 2.7 Is there an algorithm to decide whether an arbitrary variety over K
contains a rational curve?
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Note that for varieties of dimension one, the answer to this question is positive.
Indeed if V is a variety of dimension one, then V will contain a rational curve if and
only if one of its irreducible components is a curve of genus 0 and this curve contains
a K-rational point. Since, given a variety over K we can explicitly determine all its
irreducible components, and given the fact that the genus of a curve is computable, one
easily gets the algorithm asked for in the question.
For higher dimensional varieties the problem is open. However the following conjecture
gives some information for surfaces:

Conjecture (S. Lang) Let V be a variety of general type defined over a number field
K. Then there exists a proper closed subvariety W , defined over K such that for any
number field L containing K, V (L) \W (L) is finite.

Let V be a surface of general type, defined over K. If V contains a rational curve C,
then V (K) is infinite.
Conversely, suppose that V contains infinitely many points, then by Lang’s conjecture
there exists a subvariety, i.e. a one-dimensional variety, such that at least one of its
irreducible components is a curve which contains infinitely many points (i.e. this curve
is either rational or an elliptic curve of positive rank).
Summarizing we have: determining whether a surface contains a curve of genus at most
1 is as difficult as determining whether the surface has infinitely many points or not.
In view of the results in the previous section, one is lead to believe that determining
whether a variety defined over K contains a K-rational curve is as difficult as HTP(K).

Remark : (a) It is tempting to use induction on the dimension to use the similar ar-
gument for arbitrary varieties. Unfortunately this does not work: the subvariety W of
V which Lang’s conjecture asserts to exist if V is of general type, need itself not be of
general type. 3

2.3 Varieties with an infinite number of points over a ring

Here we address the decision problem of whether a given variety has an infinite number
of points over a fixed ring.

Consider a commutative domain R whose fraction field is not algebraically closed.
Let R0 be a infinite recursive subring of R with fraction field k0. Suppose further that
the algebraic closure of k0 is not contained in R. Denote the cardinality of R by |R|.
Let S be an arbitrary proper subset of N ∪ {|R|}.

Theorem 2.8 Consider the following two decision problems :

(a) Is there an algorithm to decide for an arbitrary polynomial with coefficients in
k0 whether NR(f) ∈ S
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(b) Is there an algorithm to decide for an arbitrary polynomial with coefficients in
k0 whether NR(f) = 0
A negative answer to (b) implies a negative answer to (a).

This implies that deciding whether a polynomial has infinitely or finitely many solutions
in R is as difficult as deciding whether its has a solution or not. This result was proved
by M. Davis for R = Z and was generalized by the second author.

3 Part C: Hilbert’s tenth problem for analytic and

meromorphic functions

We will look more closely into Question 1.14. The main existing results are:

Theorem 3.1 (R. Robinson) Assume that D contains a real open interval. Then the
first order theory of HD(z) in Lz,C is undecidable.

Proof : First we state:

Lemma 3.2 (Huuskonen) Assume that D ⊂ C has nonempty interior. Then the set of
constants (i.e. of constant functions) in Hz(D) is first order definable in the language
{+, ·; 0, 1, z}.

For simplicity work in the case q = 1 so that z = z1 and assume that the line
segment [0, 1] is contained in D; the general case is left to the reader. The following
formula is equivalent to α ∈ N− {0}:

C(α) ∧ ∃ x
[
x(0) = 1 ∧ x(1) = 0]

∧ ∀ y[ (y ∈ C ∧ y 6= 0 ∧ y + 1 6= 0)→
(
x

(
1

y

)
= 0→ (x

(
1

y + 1

)
= 0) ∨ y = α

)
]
]

Of course the expressions of the form 1
z

do not belong to Lz but they can be replaced
by new variables w preceeded by ∃w : z · w = 1.
The ← direction holds because if α 6∈ N, then the formula implies that each point
1
n
, with n ∈ N − {0}, is a zero of the analytic function x, while x(0) = 1, which is

impossible by the continuity of x; for the → direction, observe that, for n ∈ N − {0},
the formula is realized by taking

x = (−1)n−1(n− 1)!(z − 1)(z − 1

2
) . . . (z − 1

n− 1
) .

3

It is obvious that the proof of this Theorem shows the similar result for any ring of
functions which are continuous on [0, 1], containing the identity function.
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Theorem 3.3 ([37]) The positive-existential theory of the ring Hp,z(Cp) of functions
of the variable z which are analytic on the p-adic complex plane Cp, in the language
which extends the language of rings by a constant-symbol for z, is undecidable.

Theorem 3.4 (Vidaux, [62]) The positive-existential theory of the field Mp,z(Cp) of
functions of the variable z which are meromorphic on the p-adic complex plane Cp, in
the language which extends the language of rings by a constant-symbol for z and by a
predicate symbol for the property ‘the function x has z = 0 as a zero’, is undecidable.

The analogous questions over the field of complex numbers C are open.

4 Part D: Comments on the analogue of Hilbert’s

tenth problem for Q
As mentioned earlier, a major open problem in the area of decidability of existential
theories of rings is the analogue of Hilbert’s tenth problem for the field Q of rational
numbers.

Question 4.1 Does the analogue of Hilbert’s tenth problem for Q have a negative an-
swer?

A naive approach might seek a possible positive answer to the following:

Question 4.2 Is the set Z existentially definable in the field Q?

which, if true, would imply obviously a YES answer to Question 4.1. But the following
observation seems to make such an expectation unlikely:
All known examples of algebraic varieties over Q have the property that the real topo-
logical closure of the Zariski closure of their rational (over Q) points has finitely many
connected components.

In consequence Mazur asked whether this is true for all algebraic varieties ([40]).
He also stated a more general similar statement (an analogue where the real topology
is substituted by the p-adic topologies). These questions remain open. An implication
of a possible positive answer to Mazur’s Question would be that Question 4.2 has a
negative answer: Finitely many components project onto finitely many components,
hence existential sets of Q (being projections of varieties) would have only finitely
many components, hence Z can not be one of them. Actually the implications are much
deeper (cf. [10]). Some of us doubt the truth of Mazur’s Question (mainly because the
analogue of the p-adic version fails in global fields of positive characteristic). But still,
most (if not all) of us, expect the answer to Question 4.2 to be negative.

In [45] a programme is presented for proving Question 4.1. It is based on interpreting
the rational integers as the points (over Q) of an elliptic curve of rank 1 over Q.
Addition among points is given by the addition law on the curve. It therefore suffices to
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express existentially (in terms of the coordinates of the points) ‘multiplication’ among
points. Since this seems inaccessible for the moment, one may, as a first step, try
to define divisibility among points. Modulo conjectures (by Cornelissen and Everest)
this may be existential. But even this does not suffice due to the fact that, as we
saw, the existential theory of addition and divisibility over Z is decidable. Hence
more (existentially definable) structure is needed. A proposal of [45] to this effect
seems unlikely (by arguments of Cornelissen). But Cornelissen proposed a possible
remedy: Look, not at the points of an elliptic curve, but to the points (over Q) of
an abelian variety with a group of points which, given a natural additional structure
of multiplication, is isomorphic to a real quadratic extension of Z (say Z[

√
5]). Such

varieties do exist! If one can define existentially divisibility among points of such
a variety, then a YES answer to Question 4.1 will result from the undecidability of
the existential theory of addition and divisibility over Z[

√
5]! See [11] for additional

information on this type of approach.
Let us mention here that most, if not all, of the above approaches to resolve Question

4.1 would also disprove Mazur’s Question.
Relevant material may be found also in [31], [31]), [41] and the survey [47].
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