Algorithmic and Theoretical Considerations for Computing Generators of the Centralizer of K in $\mathcal{U}(g)$

Steven Glenn Jackson and Alfred Gérard Noël (Speaker)

Mathematics Department
The University of Massachusetts Boston

Purdue University, West Lafayette, IN
Number Theory Seminar
Thursday March 12, 2009
Outline

1. Outline
2. Preliminaries
3. Generators for $\mathfrak{U}(g)^K$
4. Jackson-N Algorithms
5. Examples
Outline of the Talk

• Representation of a reductive Lie group
Outline of the Talk

- Representation of a reductive Lie group
- Universal Enveloping Algebra
Outline of the Talk

- Representation of a reductive Lie group
- Universal Enveloping Algebra
- Problem Statement and Context
Outline of the Talk

- Representation of a reductive Lie group
- Universal Enveloping Algebra
- Problem Statement and Context
- Previous work (Brief survey)
Outline of the Talk

- Representation of a reductive Lie group
- Universal Enveloping Algebra
- Problem Statement and Context
- Previous work (Brief survey)
- Kostant’s recent result
Outline of the Talk

• Representation of a reductive Lie group
• Universal Enveloping Algebra
• Problem Statement and Context
• Previous work (Brief survey)
• Kostant’s recent result
• New Theoretical Results
Outline of the Talk

- Representation of a reductive Lie group
- Universal Enveloping Algebra
- Problem Statement and Context
- Previous work (Brief survey)
- Kostant’s recent result
- New Theoretical Results
- New Algorithm
Outline of the Talk

- Representation of a reductive Lie group
- Universal Enveloping Algebra
- Problem Statement and Context
- Previous work (Brief survey)
- Kostant’s recent result
- New Theoretical Results
- New Algorithm
- Examples
Outline

1. Outline
2. Preliminaries
3. Generators for $\mathfrak{U}(g)^K$
4. Jackson-N Algorithms
5. Examples
Representation of a reductive Lie group

Let G be a reductive Lie group. A *representation* of G on a complex Hilbert space $V \neq 0$ is a homomorphism π of G into the group of bounded linear operators on V such that:

1. π is a unitary representation if $\pi(g)$ is a unitary operator for all $g \in G$.
2. π is irreducible if the only closed G-invariant subspaces of V are $\{0\}$ and V.

Theorem: If G is non-compact and semisimple, then any non-trivial irreducible π is of infinite dimension.
Representation of a reductive Lie group

Let G be a reductive Lie group. A representation of G on a complex Hilbert space $V \neq 0$ is a homomorphism π of G into the group of bounded linear operators on V such that:

$$G \times V \rightarrow V \text{ given by } (g, v) \rightarrow \pi(g)v \text{ is continuous.}$$
Representation of a reductive Lie group

Let G be a reductive Lie group. A *representation* of G on a complex Hilbert space $V \neq 0$ is a homomorphism π of G into the group of bounded linear operators on V such that:

$$ G \times V \rightarrow V \text{ given by } (g, v) \rightarrow \pi(g)v \text{ is continuous.} $$

π is a *unitary representation* if $\pi(g)$ is a unitary operator for all $g \in G$.
Representation of a reductive Lie group

Let G be a reductive Lie group. A *representation* of G on a complex Hilbert space $V \neq 0$ is a homomorphism π of G into the group of bounded linear operators on V such that:

$$G \times V \rightarrow V \text{ given by } (g, v) \rightarrow \pi(g)v \text{ is continuous.}$$

π is a *unitary representation* if $\pi(g)$ is a unitary operator for all $g \in G$.

π is *irreducible* if the only closed G-invariant subspaces of V are $\{0\}$ and V.
Representation of a reductive Lie group

Let G be a reductive Lie group. A *representation* of G on a complex Hilbert space $V \neq 0$ is a homomorphism π of G into the group of bounded linear operators on V such that:

$$G \times V \rightarrow V \text{ given by } (g, v) \rightarrow \pi(g)v \text{ is continuous.}$$

π is a *unitary representation* if $\pi(g)$ is a unitary operator for all $g \in G$.

π is *irreducible* if the only closed G-invariant subspaces of V are $\{0\}$ and V.

Theorem

G non-compact, semisimple. Then any non trivial irreducible π is of infinite dimension.
Unitary Dual

The set of irreducible unitary representations (\textbf{The Unitary Dual}) of G denoted by \hat{G} is a fundamental tool to understand the actions of G. For G compact \hat{G} is essentially determined. Barbasch has treated the classical complex groups. However the following cases are still not resolved:

Type A: $SU(p, q)$ for $(p, q > 2)$
Type B: $SO(p, q)$ for $(p, q \geq 3)$
Type C: $Sp(p, q)$ for $(p, q \geq 2)$
Type D: $SO(p, q)$ for $(p, q \geq 3)$, $SO^*(2n)$ for $(n \geq 4)$
Type F_4: $F_4(\mathbb{C})$, $F_4(\text{split})$
Type E_6: $E_6(\mathbb{C})$, $E_6(\text{split})$, $E_6(\text{Hermitian})$, $E_6(\text{quaternionic})$
Type E_7: $E_7(\mathbb{C})$ and all real non-compact forms
Type E_8: $E_8(\mathbb{C})$ and all real non-compact forms
Assume G real reductive. Works of Harish-Chandra, Vogan, Barbash and many others relate \hat{G} to \hat{K} where K is a maximal compact subgroup of G.
Computing the Unitary Dual: \hat{G}

Assume G real reductive. Works of Harish-Chandra, Vogan, Barbasch and many others relate \hat{G} to \hat{K} where K is a maximal compact subgroup of G.

Here the fundamental object is the (g, K)-module, a vector space equipped with two compatible actions of g, the complexification of the Lie algebra of G and K. One is usually interested in Harish-Chandra modules that is (g, K)-modules that have finite multiplicities as representations of K.
Computing the Unitary Dual: \(\hat{G} \)

We are currently pursuing two lines of investigation:

• The Atlas of Lie Groups and Representations: NSF funded, directed by Jeff Adams (University of Maryland College Park): 20−25
 Mathematicians working on theoretical and algorithmic problems to produce a software system that might compute \(\hat{E}_8(8) \) and hopefully point to a general theorem.

• An attempt to determine irreducible \((g, K)\)-modules (up to infinitesimal equivalence) by the action of \(U(g)^K \), the centralizer of the complexified \(K \) in the enveloping algebra of \(g \), on any \(K \)-primary component. Harish-Chandra, [Lepowski, McCollum 1973].
Computing the Unitary Dual: \hat{G}

We are currently pursuing two lines of investigation:

- **The Atlas of Lie Groups and Representations**: NSF funded, directed by Jeff Adams (University of Maryland College Park): 20 – 25 Mathematicians working on theoretical and algorithmic problems to produce a software system that might compute $\hat{E}_8(8)$ and hopefully point to a general theorem.
Computing the Unitary Dual: \hat{G}

We are currently pursuing two lines of investigation:

- **The Atlas of Lie Groups and Representations**: NSF funded, directed by Jeff Adams (University of Maryland College Park): 20 – 25 Mathematicians working on theoretical and algorithmic problems to produce a software system that might compute $\hat{E}_8(8)$ and hopefully point to a general theorem.

- **An attempt to determine irreducible (g, K)-modules (up to infinitesimal equivalence) by the action of $\mathcal{U}(g)^K$, the centralizer of the complexified K in the enveloping algebra of g, on any K-primary component.** Harish-Chandra, [Lepowski, McCollum 1973].
Outline

1. Outline
2. Preliminaries
3. Generators for $\mathcal{U}(g)^K$
4. Jackson-N Algorithms
5. Examples
Previous Works

This line of inquiry was largely abandoned in the 1970’s as \(\mathcal{U}(\mathfrak{g})^K \) turns out to be a “hideously complicated object” (Vogan).
Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(\mathfrak{g})^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(\mathfrak{g})^K$ has been considered by several authors:
Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(g)^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(g)^K$ has been considered by several authors:

Kostant and Tirao [1976],
Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(\mathfrak{g})^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(\mathfrak{g})^K$ has been considered by several authors:

Kostant and Tirao [1976], Benabdallah [1982],
This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(\mathfrak{g})^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(\mathfrak{g})^K$ has been considered by several authors:

Kostant and Tirao [1976], Benabdallah [1982], Brega and Tirao [1987],
Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(\mathfrak{g})^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(\mathfrak{g})^K$ has been considered by several authors:

Kostant and Tirao [1976], Benabdallah [1982], Brega and Tirao [1987], Johnson [1989],
Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(\mathfrak{g})^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(\mathfrak{g})^K$ has been considered by several authors:

Kostant and Tirao [1976], Benabdallah [1982], Brega and Tirao [1987], Johnson [1989], Knop [1990],
Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(g)^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(g)^K$ has been considered by several authors:

Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(\mathfrak{g})^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(\mathfrak{g})^K$ has been considered by several authors:

Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathcal{U}(\mathfrak{g})^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathcal{U}(\mathfrak{g})^K$ has been considered by several authors:

Previous Works

This line of inquiry was largely abandoned in the 1970’s as $\mathfrak{U}(\mathfrak{g})^K$ turns out to be a “hideously complicated object” (Vogan).

The problem of determining generators for $\mathfrak{U}(\mathfrak{g})^K$ has been considered by several authors:

Complete Results for: $SU(2, 2), SU(n, 1), SO(n, 1)$. (Very few cases indeed)
Kostant’s 2006 result

\[\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} : \text{a complexified Cartan decomposition of a complex semisimple Lie algebra } \mathfrak{g}. \]
Kostant’s 2006 result

\[\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} : \text{a complexified Cartan decomposition of a complex semisimple Lie algebra } \mathfrak{g}. \]

\[K : \text{the subgroup of the adjoint group of } \mathfrak{g} \text{ corresponding to } \mathfrak{k}. \]
Kostant’s 2006 result

\[\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} : \text{a complexified Cartan decomposition of a complex semisimple Lie algebra } \mathfrak{g}. \]

\[K : \text{the subgroup of the adjoint group of } \mathfrak{g} \text{ corresponding to } \mathfrak{k}. \]

Define a filtration

\[\mathcal{U}(\mathfrak{g}) = \bigcup_{i=0}^{\infty} (\mathcal{U}(\mathfrak{g}))_i; \]

where \((\mathcal{U}(\mathfrak{g}))_i\) is the span of all \(j\)-fold products of elements of \(\mathfrak{g}\) for \(j \leq i\).
By the Poincaré-Birkhoff-Witt theorem, the associated graded algebra with respect to this filtration is the symmetric algebra $S(\mathfrak{g})$. This is canonically isomorphic to the algebra of polynomial functions $\mathbb{C}[\mathfrak{g}^*]$, and since \mathfrak{g} is reductive it is self-dual and we can identify $S(\mathfrak{g})$ with $\mathbb{C}[\mathfrak{g}]$. In particular, if we can find generators for $\mathbb{C}[\mathfrak{g}]^K$ then any set of liftings of these generators to $\mathcal{U}(\mathfrak{g})$ will generate $\mathcal{U}(\mathfrak{g})^K$.
Kostant’s 2006 result

Generators of $\mathfrak{U}(\mathfrak{g})^K$ are obtained from lifting generators of $S(\mathfrak{g})^K$.

$S(\mathfrak{g})^K = S(\mathfrak{g})^K_r$ where $r = (2 \dim \mathfrak{g}^2)$ $\dim p$.

An analysis shows that for SL$_3$ matrices with 10 entries would be needed in order to implement Kostant’s method.
Kostant’s 2006 result

Generators of \(\mathcal{U}(\mathfrak{g})^K \) are obtained from lifting generators of \(S(\mathfrak{g})^K \).

\[
S(\mathfrak{g})^K = S(\mathfrak{g})^K_r \quad \text{where} \quad r = \binom{2 \dim \mathfrak{g}}{2} \dim p
\]

\(S(\mathfrak{g})^K_r \) the subalgebra of \(S(\mathfrak{g})^K \) defined by K-invariant polynomials of degree at most \(r \).
Kostant’s 2006 result

Generators of $\mathcal{U}(\mathfrak{g})^K$ are obtained from lifting generators of $S(\mathfrak{g})^K$.

$$S(\mathfrak{g})^K = S(\mathfrak{g})_r^K \text{ where } r = \binom{2 \dim \mathfrak{g}}{2} \dim \mathfrak{p}$$

$S(\mathfrak{g})_r^K$ the subalgebra of $S(\mathfrak{g})^K$ defined by K-invariant polynomials of degree at most r.

An analysis shows that for $SL_3(\mathbb{R})$ matrices with 10^{32} entries would be needed in order to implement Kostant’s method.
Outline

1. Outline
2. Preliminaries
3. Generators for $\mathfrak{U}(g)^K$
4. Jackson-N Algorithms
5. Examples
A Molien series for $\mathfrak{U}(g)^K$

We describe a method by which Kostant’s algorithm can be significantly accelerated by exploiting the Kostant-Rallis theorem via a certain homomorphism from $\mathfrak{U}(g)^K$ to the ring of regular functions on the nilpotent cone in \mathfrak{p}. The situation is analogous to that in the invariant theory of finite groups, where the Molien series is used to accelerate the algorithm suggested by Noether’s degree bound.

Various structural and algebraic considerations yield:

\[\mathbb{C}[g] = \mathbb{C}[\mathfrak{k}] \otimes \mathbb{C}[\mathfrak{p}] \simeq \mathbb{C}[\mathcal{N}_{\mathfrak{k}}] \otimes \mathbb{C}[\mathfrak{k}]^K \otimes \mathbb{C}[\mathcal{N}_{\mathfrak{p}}] \otimes \mathbb{C}[\mathfrak{p}]^K \]

where \(\mathcal{N}_{\mathfrak{k}} \) and \(\mathcal{N}_{\mathfrak{p}} \) are the cone of nilpotent elements of \(\mathfrak{k} \) and \(\mathfrak{p} \) respectively. Hence

\[\mathbb{C}[g]^K \simeq (\mathbb{C}[\mathcal{N}_{\mathfrak{k}}] \otimes \mathbb{C}[\mathcal{N}_{\mathfrak{p}}])^K \otimes \mathbb{C}[\mathfrak{k}]^K \otimes \mathbb{C}[\mathfrak{p}]^K. \]

This is not an algebra isomorphism but we know that lifting of generators will work!!
A Molien series for $\mathcal{U}(g)^K$

Generators for $\mathbb{C}[\mathfrak{t}]^K$ and $\mathbb{C}[\mathfrak{p}]^K$ are known [Goodman - Wallach].
A Molien series for $\mathcal{U}(g)^K$

Generators for $\mathbb{C}[\mathfrak{t}]^K$ and $\mathbb{C}[\mathfrak{p}]^K$ are known [Goodman - Wallach].

The problem reduces to computing generators for the algebra:

$$\mathcal{A} = (\mathbb{C}[\mathcal{N}_\mathfrak{t}] \otimes \mathbb{C}[\mathcal{N}_\mathfrak{p}])^K$$
A Molien series for $\mathcal{U}(g)^K$

Generators for $\mathbb{C}[\mathfrak{t}]^K$ and $\mathbb{C}[\mathfrak{p}]^K$ are known [Goodman - Wallach].

The problem reduces to computing generators for the algebra:

$$\mathcal{A} = (\mathbb{C}[\mathfrak{N}_\mathfrak{t}] \otimes \mathbb{C}[\mathfrak{N}_\mathfrak{p}])^K$$

Theorem (Jackson, N)

$\mathcal{A} \simeq \mathbb{C}[\mathfrak{N}_\mathfrak{p}]^{K^e}$, where e is a regular nilpotent element of \mathfrak{t} and K^e, the isotropy group of e in K.

Die Zähmung der widerspenstigen E_8
A Molien series for $\mathcal{U}(g)^K$

Let (h, e, f) be the Jacobson-Morozov triple associated to the regular nilpotent e. Since h is semisimple a simple argument leads to the following eigenspace decomposition:
A Molien series for $\mathcal{U}(g)^K$

Let (h, e, f) be the Jacobson-Morozov triple associated to the regular nilpotent e. Since h is semisimple a simple argument leads to the following eigenspace decomposition:

$$\mathbb{C}[[\mathcal{N}_p]]^K = \bigoplus_{i=0}^{\infty} \mathbb{C}[[\mathcal{N}_p]]_i^K$$
A Molien series for $\mathcal{U}(\mathfrak{g})^K$

Let (h, e, f) be the Jacobson-Morozov triple associated to the regular nilpotent e. Since h is semisimple a simple argument leads to the following eigenspace decomposition:

$$\mathbb{C}[\mathcal{N}_p]^K e = \bigoplus_{i=0}^{\infty} \mathbb{C}[\mathcal{N}_p]^K e_i$$

This is a grading transferable to \mathcal{A} via the above isomorphism. Define a *Molien series* for $\mathcal{U}(\mathfrak{g})^K$ as follows:
A Molien series for $\mathcal{U}(g)^K$

Let (h, e, f) be the Jacobson-Morozov triple associated to the regular nilpotent e. Since h is semisimple a simple argument leads to the following eigenspace decomposition:

$$\mathbb{C}[\mathcal{N}_p]^{K_e} = \bigoplus_{i=0}^{\infty} \mathbb{C}[\mathcal{N}_p]_i^{K_e}$$

This is a grading transferable to \mathcal{A} via the above isomorphism. Define a Molien series for $\mathcal{U}(g)^K$ as follows:

$$M(t) = \sum_{i=0}^{\infty} (\dim \mathcal{A}_i) t^i.$$

We will see that $\dim \mathcal{A}_i$ is finite.
Computing $M(t)$

Let α be maximal toral subalgebra of \mathfrak{p}. Denote by M the centralizer of α in K.

Let α be maximal toral subalgebra of \mathfrak{p}. Denote by M the centralizer of α in K.

Theorem (Jackson, N)

The formal power series $N(t) = \sum_{i=0}^{\infty} (\dim \mathbb{C}[N_k]^M) t^{2i}$ coincides with the Molien series $M(t)$. In particular, the coefficients of $M(t)$ are finite.
Computing $M(t)$

Let α be maximal toral subalgebra of \mathfrak{p}. Denote by M the centralizer of α in K.

Computing the Molien series can be reduced to computation of M-invariants on \mathfrak{t} together with a Gröbner basis calculation. Since M is frequently the product of a finite group and a torus, this often reduces the computation to familiar algorithms from the invariant theory of finite groups and integer programming.
Computing $M(t)$

Let α be maximal toral subalgebra of \mathfrak{p}. Denote by M the centralizer of α in K.

Computing the Molien series can be reduced to computation of M-invariants on \mathfrak{k} together with a Gröbner basis calculation. Since M is frequently the product of a finite group and a torus, this often reduces the computation to familiar algorithms from the invariant theory of finite groups and integer programming.

Theorem (Jakson, N)

The formal power series $N(t) = \sum_{i=0}^{\infty} (\dim \mathbb{C}[\mathcal{N}_t]_i^M) t^{2i}$ coincides with the Molien series $M(t)$. In particular, the coefficients of $M(t)$ are finite.
Computing $M(t)$

Let k be the rank of \mathfrak{k} and u_1, \ldots, u_k a system of homogeneous generators for $\mathbb{C}[\mathfrak{k}]^K$ of degrees d_1, \ldots, d_k respectively. Then (u_1, \ldots, u_k) is a regular sequence in $\mathbb{C}[\mathfrak{k}]$. In other words $\text{codim } \mathcal{N}_{\mathfrak{k}}$ in \mathfrak{k} is k.
Computing $M(t)$

Let k be the rank of \mathfrak{k} and u_1, \ldots, u_k a system of homogeneous generators for $\mathbb{C}[\mathfrak{k}]^K$ of degrees d_1, \ldots, d_k respectively. Then (u_1, \ldots, u_k) is a regular sequence in $\mathbb{C}[\mathfrak{k}]$. In other words, $\text{codim } \mathcal{N}_{\mathfrak{k}}$ in \mathfrak{k} is k.

Define $P(t) = \sum_{i=0}^{\infty} (\dim \mathbb{C}[\mathcal{N}_{\mathfrak{k}}^M]_i) t^i$.

Theorem (Jackson, N) $M(t) = P(t)$

$= k \prod_{i=1}^{\infty} (1 - t^{2d_i})$.
Computing $M(t)$

Let k be the rank of \mathfrak{k} and u_1, \ldots, u_k a system of homogeneous generators for $\mathbb{C}[\mathfrak{k}]^K$ of degrees d_1, \ldots, d_k respectively. Then (u_1, \ldots, u_k) is a regular sequence in $\mathbb{C}[\mathfrak{k}]$. In other words codim $\mathcal{N}_{\mathfrak{k}}$ in \mathfrak{k} is k.

Define $P(t) = \sum_{i=0}^{\infty} (\dim \mathbb{C}[\mathcal{N}_{\mathfrak{k}}]_i^M) t^i$.

Theorem (Jackson, N)

$$M(t) = P(t^2) \prod_{i=1}^{k} (1 - t^{2d_i}).$$
Computing $M(t)$

M, the centralizer of α in K, is reductive; hence it has a compact real form $M_{\mathbb{R}}$. When M is abelian we can define $R(x_1, \ldots, x_n)$ by the formula

$$R(x_1, \ldots, x_n) = \int_{m \in M_{\mathbb{R}}} \prod_{i=1}^{n} \frac{1}{1 - mx_i} \, dm.$$

Then $P(t) = R(t, \ldots, t)$.
Computing $M(t)$

If the pair (G, K) corresponds to a split real group, then M is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^l$, where l is the rank of G. In particular, M is abelian, and the invariant integral described in the previous section collapses to a finite sum. Since M is a 2-group, we see that x_i^2 is M-invariant for all i. Now let S denote the set of all M-invariant square-free monomials in x_1, \ldots, x_n. Then

$$R(x_1, \ldots, x_n) = \frac{\sum_{\mu \in S} \mu}{\prod_{i=1}^n (1 - x_i^2)}.$$
Computing $M(t)$ for $SL_\mathbb{R}(3)$

The square-free invariant monomials correspond to the graphs:

v_1
v_2 v_3

v_1
v_2 v_3

$P(t) = 1 + t^3(1 - t^2)^3$. Since $k = 1$ and $d_1 = 2$,

$M(t) = 1 + t^6(1 - t^4)^2$.

Steven Glenn Jackson and Alfred Gérard Noël (Speaker)
Computing $M(t)$ for $SL_{\mathbb{R}}(3)$

The square-free invariant monomials correspond to the graphs:

$$P(t) = \frac{1 + t^3}{(1 - t^2)^3}.$$

Since $k = 1$ and $d_1 = 2$,

$$M(t) = \frac{1 + t^6}{(1 - t^4)^2}.$$
Computing $M(t)$ for $SL_R(4)$

The square-free invariant monomials correspond to the graphs:
Computing $M(t)$ for $SL_R(4)$

together with their edge-complements (i.e. the graphs obtained from those above by deleting all existing edges and placing an edge between each pair of vertices which were previously unconnected).
Computing $M(t)$ for $SL_\mathbb{R}(4)$

together with their edge-complements (i.e. the graphs obtained from those above by deleting all existing edges and placing an edge between each pair of vertices which were previously unconnected).

$$P(t) = \frac{1 + 3t^2 + 8t^3 + 3t^4 + t^6}{(1 - t^2)^6}.$$

Here $k = 2$, $d_1 = 2$, and $d_2 = 2$, so we obtain

$$M(t) = \frac{1 + 3t^4 + 8t^6 + 3t^8 + t^{12}}{(1 - t^4)^4}.$$
Computing $M(t)$ for $SL_\mathbb{R}(4)$

together with their edge-complements (i.e. the graphs obtained from those above by deleting all existing edges and placing an edge between each pair of vertices which were previously unconnected).

$$P(t) = \frac{1 + 3t^2 + 8t^3 + 3t^4 + t^6}{(1 - t^2)^6}.$$

Here $k = 2$, $d_1 = 2$, and $d_2 = 2$, so we obtain

$$M(t) = \frac{1 + 3t^4 + 8t^6 + 3t^8 + t^{12}}{(1 - t^4)^4}.$$

This technique is valid for $SL_\mathbb{R}(n)$.

Steven Glenn Jackson and Alfred Gérard Noël (Speaker)
Die Zähmung der widerspenstigen E_8
Algorithms

If one knows the Molien series $M(t)$ then one has an algorithm to test whether a given collection of K-invariants $f_1, \ldots, f_n \in \mathbb{C}[g]$ (together with the usual generators for $\mathbb{C}[\mathfrak{t}]^K$ and $\mathbb{C}[\mathfrak{p}]^K$) generate $\mathbb{C}[g]^K$. Let $\pi : \mathbb{C}[g] \to \mathbb{C}[[\mathfrak{t}]] \otimes \mathbb{C}[[\mathfrak{p}]]$ be the projection, and let \mathcal{A}' be the subalgebra of \mathcal{A} generated by $\pi(f_1), \ldots, \pi(f_n)$.
If one knows the Molien series $M(t)$ then one has an algorithm to test whether a given collection of K-invariants $f_1, \ldots, f_n \in \mathbb{C}[g]$ (together with the usual generators for $\mathbb{C}[\mathfrak{t}]^K$ and $\mathbb{C}[\mathfrak{p}]^K$) generate $\mathbb{C}[g]^K$. Let

$$\pi : \mathbb{C}[g] \rightarrow \mathbb{C}[\mathcal{N}(\mathfrak{t})] \otimes \mathbb{C}[\mathcal{N}(\mathfrak{p})]$$

be the projection, and let A' be the subalgebra of A generated by $\pi(f_1), \ldots, \pi(f_n)$. Replacing the f_i by their \mathfrak{t}-homogeneous components if necessary, define a formal power series $Q(t)$ by

$$Q(t) = \sum_{i=0}^{\infty} (\dim A'_i) \ t^i.$$

If $Q(t) = M(t)$, then f_1, \ldots, f_n is included in a set of generators for $\mathfrak{U}(g)^K$.
Thus, computing generators for $U(g)^K$ is reduced to two problems:
Thus, computing generators for $\mathcal{U}(g)^K$ is reduced to two problems:

- Computing $M(t)$ (or, equivalently, computing $P(t)$)
Thus, computing generators for $\mathcal{U}(\mathfrak{g})^K$ is reduced to two problems:

- Computing $M(t)$ (or, equivalently, computing $P(t)$)
- Manufacturing large lists of elements of $\mathbb{C}[\mathfrak{g}]^K$.
Thus, computing generators for $\mathcal{U}(\mathfrak{g})^K$ is reduced to two problems:

- Computing $M(t)$ (or, equivalently, computing $P(t)$)
- Manufacturing large lists of elements of $\mathbb{C}[\mathfrak{g}]^K$.

We have two ways of manufacturing elements of $\mathbb{C}[\mathfrak{g}]^K$.
Method I: Linear Algebra

Method I is general and produces a basis for $\mathbb{C}[g]^K_d$ by computing the Kernel of a matrix. It is suitable for implementation on a computer algebra system. If $M(t)$ is known, this leads immediately to an algorithm which computes generators for $\mathbb{C}[g]^K$: starting with $i = 0$, we increment i until a basis for $\sum_{d=0}^{i} \mathbb{C}[g]^K_d$ gives $Q(t) = M(t)$.
Method II: Trace Forms

Method II is much faster than Method I. But there is no guarantee that $\mathbb{C}[g]^K$ will be generated by trace forms.
Method II: Trace Forms

Method II is much faster than Method I. But there is no guarantee that \(\mathbb{C}[g]^K \) will be generated by trace forms.

In general, one can always decompose \(g \) as a sum of irreducible \(K \)-modules:

\[
g = g_1 \oplus \cdots \oplus g_m
\]

for some \(m \). For \(1 \leq i \leq m \) let \(\pi_i \) denote the \(K \)-equivariant projection from \(g \) to \(g_i \). Passing to a representation \(V \) of \(g \), we can regard each \(g_i \) as a space of matrices on which \(K \) acts by conjugation. Now for any sequence \(i_1, \ldots, i_d \) with \(1 \leq i_j \leq m \), define a function \(f_{V,i_1,\ldots,i_d} : g \to \mathbb{C} \) by the formula

\[
f_{V,i_1,\ldots,i_d}(x) = \text{trace}_V(\pi_{i_1}(x) \cdots \pi_{i_d}(x)).
\]

Evidently \(f_{V,i_1,\ldots,i_d} \) is a polynomial of degree \(d \), and by construction it lies in \(\mathbb{C}[g]^K \).
Outline

1. Outline
2. Preliminaries
3. Generators for $\mathcal{U}(g)^K$
4. Jackson-N Algorithms
5. Examples
Now let V denote the standard representation of \mathfrak{sl}_3. Using the algorithms discussed earlier we show that:
Now let V denote the standard representation of \mathfrak{sl}_3. Using the algorithms discussed earlier we show that:

\[
\{ f_{V,1,1}, f_{V,2,2}, f_{V,1,1,2}, f_{V,2,2,2}, f_{V,1,2,1,2}, f_{V,1,2,1,1,2,2} \}
\]

generate $\mathbb{C}[\mathfrak{g}]^K$.

$SL\mathbb{R}(3)$
Now let V denote the standard representation of \mathfrak{sl}_3. Using the algorithms discussed earlier we show that:

$$\{f_{V,1,1}, f_{V,2,2}, f_{V,1,1,2}, f_{V,2,2,2}, f_{V,1,2,1,2}, f_{V,1,2,1,1,2,2}\}$$

generate $\mathbb{C}[\mathfrak{g}]^K$.

In other words, letting A and S be the antisymmetric and symmetric parts, respectively, of a generic element $x \in \mathfrak{g}$, liftings of the polynomial functions

$$\{\text{tr}(A^2), \text{tr}(S^2), \text{tr}(A^2 S), \text{tr}(S^3), \text{tr}((AS)^2), \text{tr}(ASA^2 S^2)\}$$

generate $\mathcal{U}(\mathfrak{g})^K$.

Steven Glenn Jackson and Alfred Gérard Noël (Speaker)
Letting V denote the standard representation of \mathfrak{sl}_4, we can check that $\mathcal{U}(g)^K$ is generated by liftings of trace forms on V of degree nine or less.
SU(2, 2)

A simple calculation in Macaulay2 now gives

\[M(t) = 1 + t^4 (1 - t^4)(1 - t^2)^3. \]
SU(2, 2)

A simple calculation in Macaulay2 now gives

\[M(t) = \frac{1 + t^4}{(1 - t^4)(1 - t^2)^3}. \]
$SU(2, 2)$

A simple calculation in Macaulay2 now gives

$$M(t) = \frac{1 + t^4}{(1 - t^4)(1 - t^2)^3}.$$

Next let V be the standard representation of $g = \mathfrak{sl}_4$, and decompose a typical element of g into 2×2 blocks

$$x = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$
SU(2, 2)

A simple calculation in Macaulay2 now gives

\[M(t) = \frac{1 + t^4}{(1 - t^4)(1 - t^2)^3}. \]

Next let \(V \) be the standard representation of \(g = \mathfrak{sl}_4 \), and decompose a typical element of \(g \) into \(2 \times 2 \) blocks

\[x = \begin{bmatrix} A & B \\ C & D \end{bmatrix}. \]

Then define

\[\pi_1(x) = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \quad \pi_2(x) = \begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix}, \quad \pi_3(x) = \begin{bmatrix} 0 & 0 \\ C & 0 \end{bmatrix}, \quad \pi_4(x) = \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix}. \]
so that π_1, \ldots, π_4 are the equivariant projections occurring in the discussion of trace forms.
so that π_1, \ldots, π_4 are the equivariant projections occurring in the discussion of trace forms.
One checks that the trace forms

$$\{ f_{V,1}, f_{V,4}, f_{V,1,1}, f_{V,4,4}, f_{V,2,3}, f_{V,1,2,3}, f_{V,2,4,3}, f_{V,1,2,4,3}, f_{V,2,3,2,3}, f_{V,1,2,4,3,2,3} \}$$

generate $\mathbb{C}[g]^K$,

SU(2, 2)
so that π_1, \ldots, π_4 are the equivariant projections occurring in the discussion of trace forms. One checks that the trace forms

$$\{ f_{V,1}, f_{V,4}, f_{V,1,1}, f_{V,4,4}, f_{V,2,3}, f_{V,1,2,3}, f_{V,2,4,3}, f_{V,1,2,4,3}, f_{V,2,3,2,3}, f_{V,1,2,4,3,2,3} \}$$

generate $\mathbb{C}[g]^K$, whence liftings of the polynomial functions

$$\{ \text{tr}(A), \text{tr}(D), \text{tr}(A^2), \text{tr}(D^2), \text{tr}(BC), \text{tr}(ABC), \text{tr}(BDC), \text{tr}(ABDC), \text{tr}((BC)^2), \text{tr}(ABDCBC) \}.$$

generate $\mathfrak{U}(g)^K$. (This agrees with Zhu’s result.)
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, and let $\alpha_1, \alpha_2 \in \mathfrak{h}^*$ be the short and long simple roots, respectively. Let X_α be the element of a Chevalley basis corresponding to the root α, and put $H_\alpha = [X_\alpha, X_{-\alpha}]$. Conjugating by an inner automorphism if necessary, we may take
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, and let $\alpha_1, \alpha_2 \in \mathfrak{h}^*$ be the short and long simple roots, respectively. Let X_α be the element of a Chevalley basis corresponding to the root α, and put $H_\alpha = [X_\alpha, X_{-\alpha}]$. Conjugating by an inner automorphism if necessary, we may take

\[\mathfrak{k} = \text{span}(X_{\alpha_1}, X_{-\alpha_1}, H_{\alpha_1}, X_{3\alpha_1+2\alpha_2}, X_{-3\alpha_1-2\alpha_2}, H_{3\alpha_1+2\alpha_2}) \]

\[\mathfrak{p} = \text{span}(X_{\alpha_2}, X_{-\alpha_2}, X_{\alpha_1+\alpha_2}, X_{-\alpha_1-\alpha_2}, X_{2\alpha_1+\alpha_2}, X_{-2\alpha_1-\alpha_2}, X_{3\alpha_1+\alpha_2}, X_{-3\alpha_1-\alpha_2}) . \]
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, and let $\alpha_1, \alpha_2 \in \mathfrak{h}^*$ be the short and long simple roots, respectively. Let X_α be the element of a Chevalley basis corresponding to the root α, and put $H_\alpha = [X_\alpha, X_{-\alpha}]$. Conjugating by an inner automorphism if necessary, we may take

$$\mathfrak{k} = \text{span}(X_{\alpha_1}, X_{-\alpha_1}, H_{\alpha_1}, X_{3\alpha_1 + 2\alpha_2}, X_{-3\alpha_1 - 2\alpha_2}, H_{3\alpha_1 + 2\alpha_2})$$

$$\mathfrak{p} = \text{span}(X_{\alpha_2}, X_{-\alpha_2}, X_{\alpha_1 + \alpha_2}, X_{-\alpha_1 - \alpha_2}, X_{2\alpha_1 + \alpha_2}, X_{-2\alpha_1 - \alpha_2}, X_{3\alpha_1 + \alpha_2}, X_{-3\alpha_1 - \alpha_2}).$$

$$M(t) = \frac{1 + 3t^4 + 8t^6 + 3t^8 + t^{12}}{(1 - t^4)^4}$$
Put

\[g_1 = \text{span}(X_{\alpha_1}, X_{-\alpha_1}, H_{\alpha_1}) \]
\[g_2 = \text{span}(X_{3\alpha_1+2\alpha_1}, X_{-3\alpha_1-2\alpha_2}, H_{3\alpha_1+2\alpha_2}) \]
\[g_3 = p \]

so that \(g = g_1 \oplus g_2 \oplus g_3 \) is the decomposition of \(g \) into irreducible \(K \)-modules.
Let V be the seven-dimensional irreducible representation of \mathfrak{g} induced from the embedding of \mathfrak{g}_2 into \mathfrak{so}_7.
Let V be the seven-dimensional irreducible representation of \mathfrak{g} induced from the embedding of \mathfrak{g}_2 into \mathfrak{so}_7. One finds that the trace forms

$$\{ f_{V,1,1}, f_{V,2,2}, f_{V,3,3}, f_{V,1,3,2,3}, f_{V,1,1,3,3}, f_{V,1,3,2,3,3,3}, f_{V,2,3,3,2,3,3}, f_{V,1,1,3,3,3,3}, f_{V,2,1,3,1,1,3}, f_{V,3,3,3,3,3,3}, f_{V,1,3,1,3,3,2,3}, f_{V,1,3,2,3,3,3,3}, f_{V,1,3,1,3,3,1,3,3,3}, f_{V,1,3,2,3,3,1,3,3,3}, f_{V,1,3,2,3,3,2,3,3,3}, f_{V,1,1,3,2,1,3,3,2,3}, f_{V,1,2,3,1,1,3,3,1,3,3}, f_{V,2,3,3,2,3,3,3,3,3}, f_{V,1,3,1,3,2,3,3,3,3,3,3}, f_{V,1,3,2,3,3,2,3,3,3,3,3,3,3,3,3} \}$$

generate $\mathbb{C}[\mathfrak{g}]^K$.

Steven Glenn Jackson and Alfred Gérard Noël (Speaker)
Recent work of Steven Jackson

Recently, Steven Jackson (working alone) seems to have developed a theory for writing down the generators of $\mathfrak{U}(g)^K$ for any split real form g^R using root systems.

No computer calculations is required in the process.