The relation GR = R allows us to lift the action of_the group G by the automorphisms
a(g) on (S, u) to an action by the strict automorphisms a(g) of the groupoid (R, v): @& (g)(x,
N= (@ x, a(@y for(x, yy €R. This gives us the possibility to construct the semidirect
product GszR » which we take as the definition of the semidirect product GsEQ.
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EXCEPTIONAL VALUES IN THE R. NEVANLINNA SENSE AND IN THE
V. P. PETRENKO SENSE. 2

A. A. Gol'dberg, A. E. Eremenko, UDC 517.53
and M. L. Sodin

This paper is a continuation of [1]. In it we shall prove Theorems 2-4, formulated
in the first part; we shall use the definitions and the notations in [1]. The numbering of
the sections and formulas is continued.

3. By cj we denote positive constants.

LEMMA 3.1. Let D be a Jordan domain, whose boundary contains the interval %, and let
v be a positive harmonic function in D, having zero limit values on 2. Then there exists
a normal derivative 3v/dn, continuous and positive on R&.

LEMMA 3.2. Let D be a domain containing the sector {z:|argzl<<n/(2a), |zi <R}, l§<ct.<oo,

R > 0, and assume that the segments [, = {z ={fexp(+in/(2a), 0 <! < R,}, R,<R, lie on the bound-
ary 9D. Let v be a positive harmonic function in D, vanishing on %i. Then there exist num-
bers ¢, > ¢, > 0 such that for 0<r < R,/2 we have

¢yre cos af < v(ref®) << c,r® cos b, !9:\<2"°—L, (3.1)

and, moreover, the left-hand side of this inequality is satified also for r<R.

LEMMA 3.3. Let D be a domain containing the sector {z:largzi<;a, |zI>R}, %<a<oo,R>0,

and assume that the rays [,={z=!exp(Lin/(2a)), |2| > R;}, Ry>>R, lie on the boundary 3D. Let v
be a positive harmonic function in D, vanishing on £+ and unbounded in this sector. Then
for r > 2R, 0| <n/(2¢) the inequality (3.1) is satisfied and, moreover, the left-hand side of
this inequality is satisfied also for r>R.

Statements of this type are well known; therefore, we shall omit of the proof of the
lemmas. The following fact is also known (see, for example, [2], Sec. 2.3, Exercise 2).

LEMMA 3.4. Let D,, D, be disjoint domains, gD, /| 6D, =/, where % is a segment. Assume
that the function v is harmonic in D,, D,, continuous in D, | D,-U ! and equal to 0 on 2.
By 8/9n;, 3/9n, we denote the derivatives along the interior normals to the boundaries of the

domains D,, D,, respectively. If (a-% +b%-)v(z)>0, 2z€!, then v is subharmonic in D, | D, U L
1 2

Translated from Teoriya Funktsii, Funktsional'nyi Analiz i Ikh Prilozheniya, No. 48,
pp. 58-70, 1987. Original article submitted October 16, 1985.

0090-4104/90/4902-0891$12.50 e 1990 Plenum Publishing Corporation 891



The following lemma plays a fundamental role at the proof of Theorem 3.

LEMMA 3.5. For any ae(l 6) there exists a functionu ¢S with the following proper-

ties: 20y
u(@)=0,'zi<l; (3.2)
lu(@)| <z, 2€C; (3.3)
lut (re’®) || > cor®, r > 4 (3.4)
flu=(re®) || > 8 ut (re®) |, r>0, §>0. (3.5)

Proof. If f=0a/(2a—1), then n/(2B)=n—n/(2a),>6. We set D={z{zi>2}U {z:iarg(z— <<
:;_’B‘}, D, =[z:!arg(z—l)|<§%}, D,=D\D,. Let yy=¢gRe¥', where ¥ is the function that maps D,

conformally and univalently onto {w:Rew>0}, ¥(o)=100, ¢>0 (Fig. 1). Obviously, v, is a
positive harmonic function in D,, having on 3D, zero limiting values. By virtue of Lemmas
3.2 and 3.3, the factor q can be selected so that

U (2) <lzi®, z€ Dy (3.6)
)< (izt— 1B, 2€ D,, 12! <6. (3.7)
Further, by virtue of Lemma 3.2 we have
Up(re® +1) > —c,rBcos PO, r< 6, ,9._:_.5' \<2’é, (3.8)
while by virtue of Lemma 3.3 for r > 4, :Gle[u—%, n| we have
crecosa(n—|6]) < v, (re® + 1) < cgrecosa(n—|6]). (3.9)
We set
v(re®+1) = recosa(n—1{01), ré®4+1€D,, |0|<m (3.10)

and then in the sector D, {J {z:|z— 1|< 5} we replace this function by its smallest harmonic
majorant v* and we set

v (2) =0v(2), z€D, N {z:|z2— 1] > 5). (3.11)
Then for r<S5, !9{\(5’3 we have
—c,rBcos PO < v* (re® 4 1) < —cyrBcos . (3.12)

Indeed, we consider in the sector 0<<r<<5, 10'<</(2B) the harmonic function V (re®)=uv*(re'®+
1) +krPcosPB, k>0, This function vanishes on the boundary segments. By virtue of (3.10),
selecting a sufficiently large k, the function V can be made nonnegative also on the arc

h--l

{r=5. LIRS %} . By the minimum principle we have V () > 0, which gives the left-hand side of

the inequality (3.12). The right-hand side of this inequality is obtained in a similar man-
ner.

We define a function u in the following manner:

u(2) =1,(2), 2€Dy; (3.13)
u(z) =cv*(2), z€ Dy, ¢>0; (3.14)
u(@) =0, 2z6C\ (D, U Dy). (3.15)

We show that the constant c from (3.14) can be selected so that u€S . Obviously, u is con-
tinuous in € and subharmonic outside the rays I, ={z:arg(z— 1) = +n/(2B)}. By virtue of (3.9)-
(3.11), (3.13), (3.14) and Lemmas 3.1 and 3.4, the function u is subharmonic in {z:1z2—11>5),
provided ¢ < c¢5. By virtue of (3.8), (3.12)-(3.14) and Lemmas 3.1 and 3.4, the function u

is subharmonic in the neighborhoods [, ) {2:]z2—1|<<5}, provided ¢ < c,/c,. At the three points

z=1, z=l+5exp(:i:i-2-’;3)-the subharmonicity is not violated since u(z) is continuous and sub-
harmonic in the deleted neighborhoods of these points (see, for example, [3], Theorem 5.18).

Diminishing, if necessary, the constant c, we shall assume that

u(2)>—|z®, z€D,. (3.16)

In the sequel we shall need the following estimates:
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Fig. 1

u(re® + 1)< —%,B(r + 1, u), r>0, |e|<%, %, >0; (3.17)

@) sc(izi =18 1<]z|<6. (3.18)

The estimate (3.17) follows from (3.7), (3.9)-(3.15), while the estimate (3.18) from (3.7),
(3.12)-(3.15).

We show that the function u satisfies (3.2), the estimate (3.3) from (3.6), (3.13), and

(3.16), the estimate (3.4) from (3.9) and (3.13). For I<r <4, by virtue of (3.14), (3.12),
and (3.18) we have

4™ (ref®) [t = cl v* (re®) [| > c19(r — 1) > ¢y [ (re®) ||,
while for r >4, by virtue of (3.14), (3.10), (3.11), and (3.3) we have
Lu™(re®) | = c|| v* (re®) || > c1or™ > cygfiu” (re®) |,
thus, inequality (3.5) is proved. The lemma is proved.

For the proof of Theorem 2 we have to modify somewhat the function u, replacing the in-
equality (3.5) by the "opposite" inequality (3.23).

LEMMA 3. For each ae(l 6, there exist a constant x > 0 and sequences (u.) #,€S, and

211
sy), | <8, <<2,nEN, such that the functions satisfy the following conditions:
(ﬂ)r n » E Up

u, (2)=0, jz!<}h (3.19)
lun(2)| < €15'2]% 2€C; (3.20)
fun @ < e (lz!—18, 1<izI<6, B=a/Cx.=—1) (3.21)
B(r, un) > lux (™) || > e, r >4 (3.22)
a7 (5,€0) | < =l (50€®) [ (3.23)
Un (re® 4+ 1y < —uB(r + 1, un), (3.24)

r>0, |8]<n/(4p), »>0.

Proof. We shall use the domains and the functions constructed at the proof of Lemma
3.5.

For each t, 1 < t < 2, let G,={z:Rez<0, I<!z!<<3}. In the semiannulus G{ we replace
the function u by its smallest harmonic majorant. We denote the obtained function by w¢. It
is easy to see that

wSw, t—1, (3.25)

uniformly in C.

We introduce the sectors H,,.={z:zexp(—in(%+;;‘))601, [z|<3}, k=0, 1,...,n, and the
functions

v (z)={—“(zexp(—"“(%+£)))- 2€ Hy (3.26)
) 0, z¢ Hyy l2i<<3.

These are positive harmonic functions in Hy, subharmenic for |z] < 3. By virtue of (3.12)
and (3.14) we have

0 < n(z)<<cljz|— 1B, 2€G. (3.27)
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On the other hand,
w,(2) > ¢y, (21— 1), 2€G, N {z:|n—argz| < 0,4n},

in order to see this it is sufficient to apply to w, a modification of Lemma 3.1, in which D
contains on its boundary an arc of a circumference instead of the interval &. Therefore,
there exists a number r,, 1 < r; < 2, such that wy(2)>2v(2), 12]=r,, 2€G,, k=0, 1, ..., n
Now from (3.25) we conclude that there exists a number r, < r,, sufficiently close to 1,
such that

{wr, (re®):0,6n <0< 1,4} > B (r,, tp) = ...= B{ry, ta). (3.28)

We note that the numbers r,, r, do not depend on n.

Now we define a function up:
wr,(2), 12'>1y;
un(d) = { @ 12 >0 (3.29)

max{Wr,, Vg ..., Unh 2] <1y,

This function is subharmonic for |z| > r;, since w, €S, while for |z| < r; as the upper en-
velope of a finite family of subharmonic functions. Finally, u, is subharmonic in the neigh-
borhood of the neighborhood of the circumference {z:|z{=r,} since, by virtue of (3.28) and
(3.29), in some neighborhood of this circumference it coincides with wr,. Thus, u, €S . We
mention at once that for Rez>0 or |z,> 3 we have

U, (2y=u(2). (3.30)

We show that for the functions u, the relations (3.19)-(3.24) are satisfied. Relation
(3.19) is satisfied by construction. By virtue of (3.30) and (3.3), inequality (3.20) is
satisfied for |z; >3, while, by virtue of (3.19), also for |z| < 3 (not necessarily with the
same value of the constant c¢,;). The inequality (3.21) for 1<|2z|<r; and for 3<!z|<6
follows from (3.18), (3.27), (3.29), and (3.30); consequently, it holds also for c ¢;; =g,
The estimate (3.22) with c,5 = c¢; follows directly from (3.4) and (3.30).

We select the number s, < r, sufficiently close to unity in order that the sets H, ) {z:
|zl =35} be pairwise disjoint. Then by virtue of (3.30), (3.29), and (3.26) we have u,(2)>0
for Rez < 0 and

et (sn€®) || = [l ™ (5,€%9) || < nl((n + D) u (5,69 |} + Nl ut (5,6 ) = %ll it ($n€) ils

which yields (3.23).

Finally, by virtue of (3.30), (3.17), (3.8), (3.26), (3.21), and (3.29), for |0I<< n/(4P) u,
we have (I +re®)=u(l + ret®) < —u,B(14r, u) < — #,614 X B(1 +r, u,) » Which gives (3.24) with x = x,c,.
Lemma 3.6 is proved.

Proof of Theorem 2. First we construct a function U ¢S of order p, l§<p< 1, such that

lim || U= (re®®) /)| U* (re®) j| = O, (3.3D)
and at the same time
lim min{U~(@): |zl =r, 2€K}/B(r, U)>0, (3.32)
where K={z:Rez>0, [Imz{<<Injzl, 1z[>1}.

If p < 6/11, then we set a = p; if, however, p> 6/l11, then for o we take an arbitrary
number 1/2 < a < 6/11. Then, according to Lemma 3.6, there exist functions u, and numbers
Sp, for which one has (3.19)-(3.24). We set Pn = ||t (s.€9) .

We construct inductively sequences of positive, unboundedly increasing numbers (Ay),
(Tg). We set A, =T, = 1. If the numbers Ay,.oo38n-y, Ty,...,Tq-, have been already se-
lected, then we select 7,, n» 2, by observing the following conditions:

lnT,.>n§l Ay (3.33)
InTn > Ant/Pni (3.34)

now we set
A, =T8InTn, n>2. (3.35)

894



We set Ur(2) = A (z/Th), U(z) =Y, Us(2). By virtue of (3.19), this series converges uni-
k=1

formly on each compact and, consequently, UES.

Assume further that T, <|2|=r<T,41- Then

U(@)=Une1(2) + Un(2) + o () U1 (reY) |, n— oo, (3.36)

uniformly with respect to z. Indeed, by virtue of (3.19), (3.20), (3.33), (3.35), and (3.22)

we have
n—2

i n-~2
U () —Unay (2) —Un(2)] < kg‘l Ae)ur(2/Te)| < €9r® kZ‘ A<

<MpenT,  <MA_ M <
n n—t X n n—I| Tp \ ‘n' n—l?\

n—l n—l

ey || Unz (ref®) ).

If, however, T,s,<r=|2!<<Tay1 , then
U(2) =Un (@) + o () jUT (r®)]], n->oo, (3.37)

again uniformly with respect to z. Indeed, assume first that T,s,<r<5T,. Then, by virtue
of (3.20), (3.34), and (3.35), we have

r* .
lUﬂ—l (z)l 013 n—1 = To < czoAn—l

a—1

7’%_1 S CaoPnpa” Tr?—l T To
which, together with (3.36), yields (3.37). If, however,5T, <r < T, , then, making use of
(3.20), (3.33), (3.35), (3.22), we obtain

InT, < Sn An Pn = c" ”Un (Tnsnew) [I'
1

r ¢ o3 Anr® . " _ ¢ F o8
Un1 @] S Crafhos = < Tl Ta = 55 <50 A < SHI UT (D))
5

which, together with (3.36), yields again (3.37).
Now we find the order of the function U. By virtue of (3. 36) and (3.35), for Ta<r<Thp

we have B(r, U)< (Il +o(1)) B(r, Una) +B(r,Un) < (1+0(1))C1a rl“r“+cls < (4 0 (1)) 13T ¢ In Ty +

1T % INTh < €r*TS *InT, < Cpr°lnr. On the other hand, by virtue of (3 37), (3.34), (3.35),
for n » » we have B(Tasn, U)>(1+0(INIUT (T.s.6®) | —(l-i—o(l))A,,p,,/(I—i—o(l))| T'T”lnT >U+o(INTE>

2P 4+ o(1))(Tasp)? . Therefore, the order of the function U is equal to p.
Further, making use of (3.37) and (3.23), for n - « we obtain

| U= (Tt < | Ur (T |+ 0D [ UF (Tsie® I < (4 + 0 (1) | UF (Tusat®) | =0 (0| U* Tusae®) (3.38)

which gives (3.31).

Now we prove the estimate (3.32). Assume first that T,<r={z|<T.+n®T,. Then, by
virtue of (3.21), (3.35), we have

p 3B _ .
|Un(2)] <0144 (‘Ti‘— ) <014A,.|"TBT"=cuT,}"Bln35+‘T,,=o(l), n—> o0, (3.39)

since p<1<<6<p. Therefore, by virtue of (3.36), (3.20), (3.22), and (3.24), we have

U@ =Una(@+ o) B(r, Unt) < —(x+0(1)) B(r, U),

if 26K, i.e., condition (3.22) holds. Assume now that T, + In3T,<r=|2|{<Thy, 2€K. In
this case, in view of (3.26), (3.20), (3.22), (3.24), for n » = we have: U(z) = U,y (2) + Un (&} +
O(])”Un..| (re®) || < (—x+ o) B(r, Unm)) —#B(Ta+'12—To\, Un) S(—x+0(1))B(r, Uy)) —xB{r, Un) <(—% +
o(1)) B(r, U). Thus, inequality (3.22) is proved.

Making use of Theorem Y, we approximate the function U¢S by the logarithm of the
modulus of the entire function f so that (2.17) be satisfied. It is easy to see that the
order of the entire function f is also equal to p. Since U,(—r)>0, 7> 0,n¢N, we have
B(r, Uy>U(—r) > U,(—=n = u,(~r) > cy(r + 1) for r>4 by virtue of (3.9), (3.13), (3.30).
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By virtue of (3.36), (3.19), (3.20), (3.35), and (3.33) we have B(T,, U)=(1 4+0(1)) B(Th,

Un—1) < {635 + 0(1)) An 71:’:: < (63 +0()T2InT,, n-»oo, and, therefore, the lower order of the

a—]
function U is equal to a.

Now we note that

WU (re® —In| f(re® ||l = 0(r®), r—oo. (3.40)
Indeed, let E(r) be the intersection of the exceptional set from Theorem Y with the circum-
ference {z:|zl=2}. Then, by virtue of (2.17) and by the theorem of Edrei and Fuchs on small

arcs [4, p. 58], already used in Sec. 2, applied both to U and to £, we have
ween—mieenii=g{ [+ [ Jiveen—

0, 2m\E@n EWN
—1n*f(re")|1d8 =0(In*r) +- O(ro~t Inr) = 0(r), r—>oo.

Now from (3.38) and (3.40) we obtain
M (Tasn, 0. )< U™ (Tasse®) — In71 f (T$a€®) | + j| U™ (Trs06®) || =
=0(T%) + o (D] U* (Tas.£9) || < o(TH + o(DHRU* (T,s.6®) —

—In* [ (Tosae® || + 0 (1)} In* 1 [ (Tasne™®) i} = o(T3) +
'*'O(I)T(Tﬂsnv f)=o(l)T(Tﬂsn) f)v n*wp

which gives §(0, f) = 0.

Since E€(0), for sufficiently large r the set E cannot cover entirely the arc {z:lz|=
rf N K . Therefore, from (3.32) there follows that g(0, r) > 0.

The unknown function has been constructed for all p, 1/2<p< 1. Considering the function
g@@)=f(z"), ncN, we can obtain any preassigned order p > 1/2. Theorem 2 is proved.

Remark 3.1. For p < 6/11 the lower order of the constructed function f coincides with
p. For 6/11 <p< 1 this can be achieved, complicating the construction of the auxiliary
functions u, from Lemma 3.6.

Remark 3.2. For the constructed function f we have

lim In"|f(r}/InM(r, H>0. (3.41)

Fooon

Indeed, let ,
E U 2z —
< U fzilz—zi<n, éln<M. (3.42)
where E is the exceptional set from Theorem Y (see [1]). We note that in the circle {z:lz—

ri<2M+ 1} there exists the circumference {z:|z2—r|=1{}, not intersecting E. Now, by virtue
of the mean value theorem, Theorem Y, (3.36), and (3.32), for n > «» we have

nif o)< g 176 +emav< g (U +remap+

X

+o(r%) < 5‘; f Un—i (r + 1e¥) dp + % f U (r- +teydp+o(1) B(r, U,_y), (3.43)

-3

if Ta<r<Tut1. If now Tn\<r<Tn+';‘lnsTn, then for n>n, we have r+t<r+2M+1<T,+In?T,
and, by virtue of (3.43), (3.39), (3.24), (3.20), and (3.22), we have

1 () < g5 | Uns (¢ + 169 09 +0() B, Un) <
< ~#B(Tot + |1 — Toy + te¥), Unc) +o()B(r, Upy) <
S —#B(r—2M—1, Up_) + 0() B, Upt) < (—Cau + 0() B 7, Unoa) = (—cy0 + 0 (1) B(r, U). (3.44)

Assume now that T,.+—£,—ln”T,.<r<T,.+h Then for [$|<n/2 we have r<|r+te|<Tp+|r—

T+t . By virtue of (3.43), (3.24), (3.36), inequality Un(r +te) <0 and of the already
given estimates for n + », we have
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LI n/2

OIS g | Unca O+ e dbt g | Unle + te) b+
~%/2

+o(l) E(r, Un1) < (—Cgs + 0(1)) B(r, Uny) —
—%BU%+V—ﬂ+“MJM<0wu+MmBmUhn—%BmUo<bw”+umBmUy(l%)
By virtue of Lemma 2.2 and Theorem Y from [1], we have

InM(r, )~ B(r, U), r—>oo. (3.46)
Now (3.41) follows from (3.44)-(3.46).

The proof of Theorem 3 repeats entirely the proof of Theorem 2 with the only differ-
ence that the function u, from Lemma 3.6 must be replaced by the function u from Lemma 3.5,
inequality (3.22) is not needed, while the estimate (3.31) has to be replaced by the inequal-
ity |U(re®) |.> (8 + o (1)) || U* (re®®) ||, r 00, §>>0 , which holds by virtue of (3.5). By virtue of
this inequality, for the entire function f, occurring in (3.40), we have 8§(0, £f) > 0. Fur-
ther, from (3.2), (3.3), (3.35), and (3.36) there follows that

B(To, U)= (14 0(1) B(Tw Un-) < “£2ATIINT,, oo,
) n—I|
Now by virtue of (3.37), (3.4), and (3.35), we have [[U*(4T.®) || =(l + o ()| UF (ATne®) || >(cy6 +
0(1) An=1(Cou + 0N THINT, > (¢3g +0 (1)) To—1 B(Tpn, U) . From here and from (3.40) we conclude that
the function f satisfies all the requirements of Theorem 3.
% a2

4. Proof of Theorem 4. Let 2<p<w,n=%miﬂ(p' 5

). We consider the domain

n
m
Dl={z=1+re“’:r>0, 16, <n+ —‘-’I},

D,={z=——l +4re®:r>0, |9—:rtl<2ﬂTJl .
We set
o= A 20
@ =0 G *gﬁgj’ 2€Dw
We consider the function w = w, + w,, defined in C. Clearly,w¢S . The constructed
function has the following properties:
w() =0, lzI<h (4.1)
lw@) <z, 2€C; (4.2)
| (re®) | > 8 | w* (re®) [}, r>1, (4.3)
where the positive constant § depends only on u. Further,
w(—t4+6% >0, 0<0<2n, (>0 (4.4)
lw*(—t+e®)||>atrt!, 0SEIS] (4.5)
ffw* (re®) [} > Pre, r>2; (4.6)
lw* (re®)| >y (r— P+, 1<r<2, (4.7)

where the positive numbers a, B, Y depend only on p. Let Re> 2, Ry } oo, ae>0, ur(2) = arw (2/Rs).
By virtue of (4.1) the series

u@ = kg e (2)

converges uniformly on the compacta in C and u(2)€S.

We see ay= R¥*'In*Ry, and we select the sequence (Ry) so that for k> 2 we should have
k

In Ry > max {2, RE*T' In? R} = max (2%, a;_y). (4.8)

We estimate the order of the function u. If ;2; >R, then by virtue of (4.2) and (4.8)
we have
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24! 2 ¥ . ,
up(2) < R& In? Rkl—RE <lzjwt'iniz] < 2%z 2+ (In* |2, )3,
[

If [z] < Rk, then, in view of (4.1), the last inequality is obviously satisfied. Thus, the
order of the function u does not exceed 2pu + 1. Since all y(—r) >0 for r > 0, we have

u(—2Re) > up (—2Re) = R (In? Ry w (—2) = RP*+' (In3 Ry).
Consequently, the order of the function u is equal to 2u + 1.

We show that the function u has a positive deficiency. Let r> R,. We select the number
k so that R; <r<<Rpu.

Assume first that 2R, <r<<Rpy1. By virtue of (4.6) we have

laif (re®) | = RZ**' In2 R,

’w+ (:5;, &) ” > BREY (In* Ry) v, (4.9)

On the other hand, um(re¢®)=0 for m > k by virtue of (4.1) and, in addition, by virtue of
(4.2), (4.8), and (4.9), we have

k—1

|,_\;‘,l ui (re®)| < (B — 1) REL In®* Reoar® = (k— D) REH (In* Re_y) v = o (L (re®®) |}, & =00, (4.10)
uniformly with respect to r€[2R, Rpy1). Consequently, for such r by virtue of (4.3) we have
Fu”(re®) 1> (6 + o(1) | u* (re®) )|, r—o0, (4.11)

Assume now that Ry + 1 <r<<2R,. By virtue of (4.7) we have

| uit (re®)if = R;**! In? Rkl wt (’7,& e“’) ” >

> R I Ry wr (1 + ReD €O > pREH In* RRTH™ = yRY In? R,
On the other hand, for r < 2Ry, by virtue of (4.2), (4.8) and the previous estimate we have

B—1
- I 3 2R, \b
I\J 4 (’e'e)| < (k— 1) R (in* Re) (Ek‘l) =24 (e — 1) REE (In* Recr) RE = o (1) [} (re®) [, k—>o0,

j=1
uniformly with respect to r€[Rx+ 1, 2R]. Thus, by virtue of (4.3), the estimate (4.11) holds
also in this case.
We consider the remaining case Ry<r<<Ry+!. From (4.10), replacing k — 1 by k — 2, there
follows that I:Z_ju, (re®)||=o (flug_, (re®) ||), k—>oo0.
We assume that {jui (re®) (| > || uis (re®)||. Then
l[u* (re®) il < (1 4 o (1) [| udir (re®) || + | i (re'®)

i
We note that if up(z) < 0, then also uj(z) < 0 for 1
(4.3), (4.12) there follows that

HuTre®) 1> ui e ! 2 8] ui (re) ) > (3 +a(1)) llu* (re®) ||, r—>oco.

I< @2+ o) [luf (re®) ]|, r—soco. (4.12)
<]

<k—1. From here and from (4.1),

If , however, |jui (re®)|i< |l ut  (re'®)]l, then, in the same way as (4.12), we obtain |u*(ré®)| <

(2 + o (1)) [l ui_i (re®®) l. r>oc0. The sufficiently small number u,(re®)=0,r€[R, Re-+ 1], |9|E[e, g-],
1) =g | w109 d0> Liuii (o9, re(Rn Rut 1.

KRN
Then for k » «» we have

1 (re®) | > ol uazs (re®) ) + Il (st (re®) + us (€®)™[| > o (uima(re’® [|) + 1) > ol uia(re®)}) + —;— X

X Uiy e > (5 + 0 ()16t e 1> (3 + 0.1 1* (). (4.13)

Thus, from (4.11)-(4.13) there follows that the function u has a positive deficiency.
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We show that the deficiency of the function u(z — 1) is equal to 0. We have

k—I

Ry
\Eu, (Ree’® — )| < (k — ) R In? Rk_.zuaé =9t (k— 1) RAH In? R, RE. (4.14)
j=1

Further, by virtue of (4.5), we have [juf (Rie® — I)[i=R{"*' In?Rs

lw+ (eto —_ _R}‘;) “ > aR‘iu+l In® Rlee_u_' —

aR¥In®R;.. Therefore, from (4.14), (4.1), and (4.8) we conclude that for k » = we have

|t (Reet® — 1) — up (Ree® — 1)1 = o (jui (Ree® — 1)||). But by virtue of (4.4), up(Ree®—1)>0, and,
therefore, for k + « we have [|u™(Rue®— 1)]| = o(ljui" (Ree® — 1)) =To(||u* (Re®—1){}) 5 this is
what we intended to prove.

Modifying some of the steps of the proof of R. S. Yulmukhametov's theorem [5], we can
obtain the following theorem.*

THEOREM Y'. For each subharmonic function v(z) of finite order there exists an entire
function f, satisfying the asymptotic inequality:

v (re® — a) —In}|f (re® — a) |j =0 (In?r), r—oo
for each a€C.

Applying this theorem to the constructed subharmonic function u(z), we obtain an entire
function f for which the assertion of Theorem 4 holds.

Remark 4.1. For r > 0 we have w(—r) > 0. Therefore, for r> 2R, we have
u(—ry> u, (—r)>xnrt, %>0,

Consequently, the lower order of the function u, and thus, also of f, is not smaller than
w=(p —1)/2.

The fundamental results of the present paper, Theorems 1 and 2 have been communicated
by the authors in Dokl. Akad. Nauk Ukr. SSR, No. 10, 1984, pp. 3-5.
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