## Problem 3, p. 157.

March 23, 2021

The problem asks the following: To solve the heat equation

$$
u_{t}=k \Delta u
$$

in the cylinder $r \leq 1$ with the boundary conditions:

$$
\begin{equation*}
\lim _{z \rightarrow \pm \infty} u_{z}(r, \theta, z, t)=0 \tag{1}
\end{equation*}
$$

(this is how "insulated ends" has to be interpreted), and one of the following:
a) $\quad u_{r}(1, \theta, z, t)=0$,
or

$$
\begin{equation*}
b) \quad u(1, \theta, z, t)=0 . \tag{3}
\end{equation*}
$$

## Solution.

First we separate time variables from space variables: $u(x, t)=T(t) S(x)$. We obtain

$$
\frac{T^{\prime}}{k T}=\frac{\Delta S}{S}=-\lambda^{2}
$$

so

$$
\begin{equation*}
T(t)=e^{-k \lambda^{2} t} \tag{4}
\end{equation*}
$$

where $\lambda^{2}$ is an eigenvalue of the Laplacian.
For the space variables, we have in cylindrical coordinates:

$$
S_{r r}+\frac{1}{r} S_{r}+\frac{1}{r^{2}} S_{\theta \theta}+S_{z z}+\lambda^{2} S=0
$$

Writing $S=R(r) \Theta(\theta) Z(z)$ we first separate $Z$ :

$$
\begin{equation*}
\frac{R^{\prime \prime}}{R}+\frac{1}{r} \frac{R^{\prime}}{R}+\frac{1}{r^{2}} \frac{\Theta^{\prime \prime}}{\Theta}+\lambda^{2}=-\frac{Z^{\prime \prime}}{Z}=\mu \tag{5}
\end{equation*}
$$

So for $Z$ we have $Z^{\prime \prime}+\mu Z=0$. The general solution can be either an affine function (when $\mu=0, Z(z)=c_{1} z+c_{2}$ ) or a combination of sine and cosine (when $\mu>0$ ), or a combination of exponentials (when $\mu<0$ ), but in any case the boundary condition (1) implies that $Z^{\prime}(z) \rightarrow 0$ when $z \rightarrow \pm \infty$, and this is only possible when $\mu=0$ and $Z$ is constant. Since the initial condition is also independent of $z$, we may forget about $Z$ : our solutions are independent on $z$.

With $\mu=0$, equation (5) becomes

$$
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}+\lambda^{2} r^{2}=-\frac{\Theta^{\prime \prime}}{\Theta}=m^{2}
$$

so we separated the $\theta$, and since the boundary conditions for $\Theta$ are $2 \pi$ periodic, we conclude that $m$ must be an integer, and

$$
\Theta_{m}(\theta)=a_{m} \cos (m \theta)+b_{m} \sin (m \theta), \quad m=0,1,2, \ldots
$$

Now for the $r$-part we obtain

$$
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda^{2} r^{2}-m^{2}\right) R,
$$

which is reduced to Bessel's equation (see equations (5.1) and (5.2) in the book), and since $R(0)$ must be finite, the solution must be a constant times $J_{m}(\lambda r)$.

Now we use one of the boundary conditions (2) or (3). First of them gives

$$
\begin{equation*}
\text { a) } \quad J_{m}^{\prime}\left(\lambda_{m, n}\right)=0, \quad n=1,2,3, \ldots, \tag{6}
\end{equation*}
$$

and the second gives

$$
\begin{equation*}
\text { b) } \quad J_{m}\left(\lambda_{m, n}\right)=0, \quad n=1,2,3, \ldots \tag{7}
\end{equation*}
$$

In other words, $\lambda_{m, n}$ are non-negative zeros of derivative of $J_{m}$ in case a), and non-negatve zeros of $J_{m}$ in case b).

So, the general solution satisfying boundary conditions in both cases is given by the formula

$$
\begin{equation*}
u(r, \theta, z, t)=\sum_{m, n}\left(a_{m, n} \cos (m \theta)+b_{m, n} \sin (m \theta)\right) e^{-k \lambda_{m, n}^{2} t} J_{m}\left(\lambda_{m, n} r\right) \tag{8}
\end{equation*}
$$

where $\lambda_{m, n}$ have different meanings: for case a) they are zeros of $J_{m}^{\prime}$, while for case b) they are zeros of $J_{m}$.

It remains to satisfy the initial condition. For this we plug $t=0$ and write the initial condition in cylindrical coordinates:

$$
a x+b=a r \cos \theta+b
$$

We conclude that the series (8) contains only terms with $m=0$ or 1 , and $b_{m}=0$ for all $m$.

In case a)

$$
a r \cos \theta+b=\cos \theta \sum_{n} a_{n} J_{1}\left(\lambda_{1, n} r\right)+b
$$

where we used that $\lambda_{0,1}=0$, and $J_{0}(0)=1$. Then Fourier-Bessel formulas give

$$
a_{n}=\frac{2 \lambda_{1, n}^{2}}{\left(\lambda_{1, n}^{2}-1\right) J_{1}^{2}\left(\lambda_{1, n}\right)} \int_{0}^{1} \operatorname{ar} J_{1}\left(\lambda_{1, n} r\right) r d r
$$

Here we used Theorem 5.3 b ) with $c=0$ and $\nu=1$. In evaluation of the integral we follow Example 2 on p. 155. By formula (5.14) with $\nu=1$ we have

$$
x^{2} J_{1}(x)=\frac{d}{d x}\left(x^{2} J_{2}(x)\right)
$$

so the integral is equal to $J_{2}\left(\lambda_{1, n}\right) / \lambda_{1, n}$, and we obtain

$$
a_{n}=\frac{2 a \lambda_{1, n} J_{2}\left(\lambda_{1, n}\right)}{\left(\lambda_{1, n}^{2}-1\right) J_{1}^{2}\left(\lambda_{1, n}\right)},
$$

which matches the answer in the book.
And in case b) we similarly obtain:

$$
\operatorname{ar} \cos \theta+b=\cos \theta \sum_{n=1}^{\infty} a_{1, n} J_{1}\left(\lambda_{1, n} r\right)+\sum_{n=1}^{\infty} a_{0, n} J_{0}\left(\lambda_{0, n} r\right)
$$

So by Fourier-Bessel formulas (Theorem 5.3 a)), we obtain

$$
a_{1, n}=\frac{2 a}{J_{2}^{2}\left(\lambda_{1, n}\right)} \int_{0}^{1} J_{1}\left(\lambda_{1, n} r\right) r^{2} d r=\frac{2 a}{\lambda_{1, n} J_{2}\left(\lambda_{1, n}\right)},
$$

and

$$
a_{0, n}=\frac{2 b}{J_{1}^{2}\left(\lambda_{0, n}\right)} \int_{0}^{1} J_{0}\left(\lambda_{0, n} r\right) r d r=\frac{2 b}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)} .
$$

In the evaluation of these integrals, we applied the same method as in part a) (following Example 2 on p. 155), using Theorem 5.3 and formula (5.14).

