
Problem 3, p. 157.

March 23, 2021

The problem asks the following: To solve the heat equation

ut = k∆u

in the cylinder r ≤ 1 with the boundary conditions:

lim
z→±∞

uz(r, θ, z, t) = 0 (1)

(this is how “insulated ends” has to be interpreted), and one of the following:

a) ur(1, θ, z, t) = 0, (2)

or
b) u(1, θ, z, t) = 0. (3)

Solution.
First we separate time variables from space variables: u(x, t) = T (t)S(x).

We obtain
T ′

kT
=

∆S

S
= −λ2,

so
T (t) = e−kλ

2t, (4)

where λ2 is an eigenvalue of the Laplacian.
For the space variables, we have in cylindrical coordinates:

Srr +
1

r
Sr +

1

r2
Sθθ + Szz + λ2S = 0.

Writing S = R(r)Θ(θ)Z(z) we first separate Z:

R′′

R
+

1

r

R′

R
+

1

r2
Θ′′

Θ
+ λ2 = −Z

′′

Z
= µ. (5)
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So for Z we have Z ′′ + µZ = 0. The general solution can be either an affine
function (when µ = 0, Z(z) = c1z + c2) or a combination of sine and cosine
(when µ > 0), or a combination of exponentials (when µ < 0), but in any
case the boundary condition (1) implies that Z ′(z) → 0 when z → ±∞,
and this is only possible when µ = 0 and Z is constant. Since the initial
condition is also independent of z, we may forget about Z: our solutions are
independent on z.

With µ = 0, equation (5) becomes

r2
R′′

R
+ r

R′

R
+ λ2r2 = −Θ′′

Θ
= m2

so we separated the θ, and since the boundary conditions for Θ are 2π-
periodic, we conclude that m must be an integer, and

Θm(θ) = am cos(mθ) + bm sin(mθ), m = 0, 1, 2, . . . .

Now for the r-part we obtain

r2R′′ + rR′ + (λ2r2 −m2)R,

which is reduced to Bessel’s equation (see equations (5.1) and (5.2) in the
book), and since R(0) must be finite, the solution must be a constant times
Jm(λr).

Now we use one of the boundary conditions (2) or (3). First of them gives

a) J ′m(λm,n) = 0, n = 1, 2, 3, . . . , (6)

and the second gives

b) Jm(λm,n) = 0, n = 1, 2, 3, . . . . (7)

In other words, λm,n are non-negative zeros of derivative of Jm in case a),
and non-negatve zeros of Jm in case b).

So, the general solution satisfying boundary conditions in both cases is
given by the formula

u(r, θ, z, t) =
∑
m,n

(am,n cos(mθ) + bm,n sin(mθ))e−kλ
2
m,ntJm(λm,nr), (8)

where λm,n have different meanings: for case a) they are zeros of J ′m, while
for case b) they are zeros of Jm.
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It remains to satisfy the initial condition. For this we plug t = 0 and
write the initial condition in cylindrical coordinates:

ax+ b = ar cos θ + b.

We conclude that the series (8) contains only terms with m = 0 or 1, and
bm = 0 for all m.

In case a)
ar cos θ + b = cos θ

∑
n

anJ1(λ1,nr) + b,

where we used that λ0,1 = 0, and J0(0) = 1. Then Fourier-Bessel formulas
give

an =
2λ21,n

(λ21,n − 1)J2
1 (λ1,n)

∫ 1

0
arJ1(λ1,nr)rdr.

Here we used Theorem 5.3 b) with c = 0 and ν = 1. In evaluation of the
integral we follow Example 2 on p. 155. By formula (5.14) with ν = 1 we
have

x2J1(x) =
d

dx
(x2J2(x)),

so the integral is equal to J2(λ1,n)/λ1,n, and we obtain

an =
2aλ1,nJ2(λ1,n)

(λ21,n − 1)J2
1 (λ1,n)

,

which matches the answer in the book.
And in case b) we similarly obtain:

ar cos θ + b = cos θ
∞∑
n=1

a1,nJ1(λ1,nr) +
∞∑
n=1

a0,nJ0(λ0,nr).

So by Fourier–Bessel formulas (Theorem 5.3 a)), we obtain

a1,n =
2a

J2
2 (λ1,n)

∫ 1

0
J1(λ1,nr)r

2dr =
2a

λ1,nJ2(λ1,n)
,

and

a0,n =
2b

J2
1 (λ0,n)

∫ 1

0
J0(λ0,nr)rdr =

2b

λ0,nJ1(λ0,n)
.

In the evaluation of these integrals, we applied the same method as in part
a) (following Example 2 on p. 155), using Theorem 5.3 and formula (5.14).
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