Problem 3, p. 157.

March 23, 2021

The problem asks the following: To solve the heat equation
w = kAu
in the cylinder » < 1 with the boundary conditions:

lim wu,(r,0,z,t) =0 (1)

z—+oo
(this is how “insulated ends” has to be interpreted), and one of the following:
a) ur-(1,0,2,t) =0, (2)
or
b) u(1,60,z,t) =0. (3)

Solution.
First we separate time variables from space variables: u(x,t) = T'(t)S(x).

We obtain
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T(t) = e, (4)

where A\? is an eigenvalue of the Laplacian.
For the space variables, we have in cylindrical coordinates:
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Sy + =S, + 7599 +S5,, + A28 = 0.
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Writing S = R(r)O(6)Z(z) we first separate Z:
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So for Z we have Z" 4+ uZ = 0. The general solution can be either an affine
function (when p =0, Z(z) = ¢12 + ¢2) or a combination of sine and cosine
(when g > 0), or a combination of exponentials (when p < 0), but in any
case the boundary condition (1) implies that Z’(z) — 0 when z — o0,
and this is only possible when @ = 0 and Z is constant. Since the initial
condition is also independent of 2z, we may forget about Z: our solutions are
independent on z.
With = 0, equation (5) becomes
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so we separated the 6, and since the boundary conditions for © are 27-
periodic, we conclude that m must be an integer, and
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Om(0) = a,, cos(mb) + by, sin(mb), m=0,1,2,....
Now for the r-part we obtain
R+ rR + (\r* — m*)R,

which is reduced to Bessel’s equation (see equations (5.1) and (5.2) in the
book), and since R(0) must be finite, the solution must be a constant times
I (AT).

Now we use one of the boundary conditions (2) or (3). First of them gives

a) JAmn) =0, n=1,23 ..., (6)
and the second gives
b) In(Amn) =0, n=1,2.3,.... (7)

In other words, A, are non-negative zeros of derivative of .J,,, in case a),
and non-negatve zeros of .J,,, in case b).

So, the general solution satisfying boundary conditions in both cases is
given by the formula

u(r, 0, z,t) = Z(am,n cos(mb) + b, 1, sin(m@))e‘kkz"’"t(]m()\m’nr), (8)

m,n

where A, ,, have different meanings: for case a) they are zeros of J;,, while

for case b) they are zeros of J,,.



It remains to satisfy the initial condition. For this we plug ¢ = 0 and
write the initial condition in cylindrical coordinates:

axr +b=arcosf +b.

We conclude that the series (8) contains only terms with m = 0 or 1, and
b, = 0 for all m.
In case a)

arcost +b = cosb Z anJ1 (A1) + 0,

where we used that A\g; = 0, and Jy(0) = 1. Then Fourier-Bessel formulas
give
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Here we used Theorem 5.3 b) with ¢ = 0 and v = 1. In evaluation of the
integral we follow Example 2 on p. 155. By formula (5.14) with v = 1 we
have

Ay =

22 ) (z) = CZC(x2J2(x)),

so the integral is equal to J2(A1,,)/ A1, and we obtain
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which matches the answer in the book.
And in case b) we similarly obtain:

arcosf + b= cosf Z a1 nJ1 (A ar) + Z ao.nJo(Aont).

n=1 n=1

So by Fourier—Bessel formulas (Theorem 5.3 a)), we obtain

2a 1 2a
D= O dr = —2
o J22(/\1,n)/0 HAr)rdr A2 (A1)
and o . 9%
e OV . o—
o J12(>\o,n)/0 oAoarrdr Ao (Aon)

In the evaluation of these integrals, we applied the same method as in part
a) (following Example 2 on p. 155), using Theorem 5.3 and formula (5.14).
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