
Math 520 midterm exam, spring 2021

NAME: A. Eremenko

1. Let f be a continuous, piecewise-smooth function with Fourier expansion

f(x) =
∞∑
n=1

bn sinnx, 0 < x < π.

Suppose that f satisfies

f(x) = f(π − x), 0 < x < π.

Find b2n, for all n = 1, 2, 3, . . . . Justify your answer.

Solution. First method.

b2n =
2

π

∫ π

0
f(x) sin(2nx) dx.

Changing the variable to y = π − x and using the assumption about f , we
obtain

b2n =
2

π

∫ π

0
f(y) sin(2n(π − x)) dx = −b2n.

So b2n = 0.

Second method.

f(π − x) =
∞∑
n=1

bm sin(n(π − x)) = −
∑

n even
bn sin(nx) +

∑
n odd

bn sin(nx),

where we used that sine is odd and has period 2π. This must be equal to
f(x), so by uniqueness theorem, bn = −bn when n is even. Thus b2n = 0.
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2. Consider the Fourier expansion

ex =
a0
2

+
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx, π < x < π.

a) Find a0.

b) Find
∑∞
n=1(−1)nan. (Hint: this is the value of

∑∞
n=1 an cosnx at x = π.)

Solution. a) The constant term is the average:

a0
2

=
1

2π

∫ π

−π
exdx = (eπ − e−π)/(2π) = (sinh π)/π,

so a0 = 2(sinhπ)/π.

b) Let

S(x) =
a0
2

+
∞∑
n=1

an cosnx.

This is the even part of our function, and its 2π periodic extension is contin-
uous, so

S(x) = (ex + e−x)/2, and S(π) = (eπ + e−π)/2 = coshπ.

and ∞∑
n=1

(−1)nan = S(π)− a0
2

= coshπ − (sinh π)/π.
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3. Which of the following sequences are Fourier coefficients of some function
f ∈ L2(−π, π)?

a) cn =
n

n2 + 1
,

b) cn =
(−1)n

1 +
√
|n|

,

c) cn =
1

(1 +
√
|n|) log(1 + n2)

.

Solution. By the Riesz–Fisher Theorem, it is necessary and sufficient that∑
n

|cn|2 <∞.

For a) this condition is satisfied, since |cn|2 ∼ n−2.
For b) it is not satisfied since |cn|2 ∼ n−1 and

∑
n

1

n
=∞,

by comparison with the integral.
For c), it is satisfied since |cn|2 ∼ 4−1n−1(log n)−2, and the series is con-

vergent by comparison with the integral∫ ∞ dx

x(log2 x)
=
∫ ∞ du

u2
,

where u = log x.
So the answer is: a) and c).
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4. Consider the one-dimensional wave equation

utt = uxx, 0 < x < 1, t > 0,

with boundary conditions

u(0, t) = u(1, t) = 0,

and initial conditions

u(x, 0) = x2(1− x), and ut(x, 0) = 0.

Find u(1/2, 3). (The answer should be an explicit number, not a series!).

Solution. Use d’Alembert’s formula. Let φ(x) = x2(1 − x), and φ̃ the
2-periodic, odd extension of φ(x) = x2(1 − x). d’Alembert’s formula
gives the solution in the form

u(x, t) =
1

2

(
φ̃(x+ t) + φ̃(x− t)

)
,

so

u(1/2, 3) =
1

2

(
φ̃(7/2) + φ̃(−5/2)

)
.

Now, since φ̃ is 2-periodic and odd, we have

φ̃(7/2) = φ̃(7/2− 4) = φ̃(−1/2) = −φ̃(1/2),

and
φ̃(−5/2) = φ̃(−5/2 + 2) = φ̃(−1/2) = −φ̃(1/2).

So
u(1/2, 3) = −φ̃(1/2) = −φ(1/2) = −1/8.

PLEASE, RE-READ THE HANDOUT “D’ALEMBERT FOR-
MULA” AS MANY TIMES AS NECESSARY, AND ASK QUES-
TIONS, UNTIL YOU UNDERSTAND IT!
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5. For the Sturm-Liouville problem:

y′′ + λy = 0, y(0) = 0, y′(1) = −y(1)/2,

answer the following questions:

a) Is it self-adjoint?

b) How many eigenvalues λ belong to the interval (0, 25)

c) Are there any negative eigenvalues? How many?

All answers have to be justified.

Solution. a) Yes. The boundary conditions are separated.
b) Let λ = ω2. Then ω is either real or pure imaginary, but in any case

we have
y(x) = a cosωx+ b sinωx,

y′(x) = −aω sinωx+ bω cosωx.

Condition y(0) = 0 implies that a = 0. Condition y′(1) = −y(1)/2 gives

tanω = −2ω.

By sketching the graph for real ω, we see that this equation has two solutions
on the interval (0, 2π), and the bigger one is greater than 3π/2. Since

3π/2 < 5 =
√

25 < 2π,

we conclude that there are two eigenvalues λ on the interval (0, 25). Remark.
(0, 25) means 0 < λ < 25.

If λ < 0, then ω is pure imaginary, say ω = it, then we have tan it =
i tanh t, and the equation becomes

tanh t = −2t.

Sketching the graph, we see that this equation has no solutions except 0.
Zero is not called a negative number. There are no negative eigenvalues λ.
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