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THE DYNAMICS OF ANALYTIC TRANSFORMATIONS

A. E. EREMENKO AND M. YU. LYUBICH

ABSTRACT. This is a survey of the theory of iterates of analytic transformations
f:§ — S of Riemann surfaces. All the basic aspects of the theory are touched
on: local problems, dynamics on hyperbolic Riemann surfaces, the topological
dynamics of rational endomorphisms from Fatou and Julia to our day, the
connection with functional equations, measurable dynamics on the Julia set,
iterates of entire functions.
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The theory of iterates of analytic transformations created at the beginning of
the century in papers of Julia [94] and Fatou ([80]-[82])( 1) has now entered a
period of great development, after passing through a fifty-year epoch of stagna-
tion (1930-1980) and several years of stormy revival at the start of the 1980s.
This makes it possible to give something of a summary in a relatively calm
setting.

The subject of the theory of iterates is the qualitative study of dynamical sys-
tems generated by analytic transformations f: .S — § of Riemann surfaces (in
the first place by rational endomorphisms f: z — P(z)/Q(z) of the Riemann
sphere C; here P and Q are complex polynomials). In this case the dynamical
system should be understood to be the semigroup of iterates

f":fo---of (n=1,2,...).
N e’

n

The basic problem is to picture the phase portrait of such a system, i.e., the
typical behavior of its different trajectories {f "z};";o , as well as the character
of change of the phase portrait under a smooth deformation of f.

The theory of iterates focuses in itself the ideas and methods of very diverse
areas of mathematics. The theory of dynamical systems provides an under-
standing of the nature of chaos, the fractal property, and structural stability,
and is the main source for the formulation of problems. The technique tradi-
tional since the times of Julia and Fatou—geometric function theory—has now
been enriched by the apparatus of quasiconformal mappings and Teichmiiller
spaces, the use of which has elevated the whole area to a qualitatively different
level. The main role in this has been played by work of Douady and Hubbard
[75], Sullivan [136], and Thurston [142]. But in addition the specialist in topol-
ogy, functional analysis, mathematical physics, or numerical mathematics can
find here his own interesting problems, or a field for application of his methods,
or nice illustrative examples.

In this survey the authors have tried to present the basic classical and con-
temporary results in the theory of iterates, while demonstrating the effect of
various ideas and methods. The first chapter bears an introductory character.
In §1 we outline the vocabulary from complex analysis that is necessary for un-
derstanding what follows (the hyperbolic metric, branched cover, Teichmiiller
space, and so on.) The basic object of investigation—an analytic transformation
f:8 — S of a Riemann surface—appears in the short §2, along with the defi-
nitions of the simplest concepts connected with its dynamics—periodic points,
multipliers, etc.

The next section (§3) already relates directly to the subject of the survey.
It presents the local theory: the dynamics of an analytic transformation in a

(l )The basic results were apparently obtained independently by Ritt [126], who published only
that part of his investigations that did not overlap the memoirs of Fatou and Julia. The reader
interested in the earlier history of the theory of iterates can turn to [11].
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FiGURe 1. “Douady’s rabbit” is obtained by
iterating the polynomial z ~— z> + ¢, with
¢ ~ —0.12 + 0.74i. The Julia set is the skin of the
rabbit.

neighborhood of an equilibrium position. It was these problems (in their con-
nection with certain functional equations) that began the theory of iterates more
than a century ago. Nevertheless, there remain delicate unanswered questions
here relating chiefly to the problem of stability in a neighborhood of a neutral
equilibrium position. Deep results in this circle of problems were very recently
obtained by Yoccoz [145].

The first chapter closes with a description of the dynamics on hyperbolic
Riemann surfaces. In this case the picture is very transparent, since chaotic
phenomena are absent. A prototype for it is the classical Denjoy-Wolff theorem
on transformations of the disk.

Chapter 2 is devoted to topological dynamics of rational endomorphisms
f:C — C of the Riemann sphere. The fascination of this theory has to do
with the coexistence of regular and chaotic dynamics, leading to a partition of
the sphere into two invariant subsets—the Fatou set F(f) and the Julia set
J(f) (Figures 1, 2). The first four sections (§§1-4) contain mostly classical
results about the structure of these sets, the classification of periodic points,
and the dynamics on the periodic components of the Fatou set. Here we sketch
a proof of Sullivan’s theorem on the absence of wandering domains, which leads
to a complete picture of the dynamics on the Fatou set. This proof is a first
illustration of the power of the method of quasiconformal deformations.

In the next five sections (§§5-9) the reader finds many other examples on this
theme: quasiconformal surgery becomes the main tool here. We present the
theory of Thurston, the theory of structural stability in holomorphic families of
rational functions ([26], [27], [115]), and results obtained in the past decade by
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FiGURE 2. The Julia set of the polynomial z +— 24,

Douady and Hubbard, by Shishikura, and by other authors. A special place in
this circle of questions is occupied by the investigation of the Mandelbrot set—
the bifurcation diagram of the quadratic family z +» Z+e (§7). Its beauty
was one of the main sources of interest in the theory of iterates that arose at
the beginning of the 1980s. The deep penetration of Douady and Hubbard into
the intricate structure of this set is one of the most impressive achievements of
recent years. We give an initial presentation of the subject, referring the reader
wishing to acquaint himself with it more closely to the remarkable paper [76].

In §10 there is a table demonstrating the connection between the theory of
iterates and the theory of Kleinian groups. This connection was already under-
stood by the classicists but only after Sullivan’s work did it become an effective
device that enriched both areas. Unfortunately, we did not have the opportunity
to develop this line as thoroughly as it deserves.

Finally, in the last section of Chapter 2 (§11) we present classical results of
Julia, Fatou, and Ritt about commuting rational functions and certain func-
tional equations. These problems were an important stimulus for the creators
of the theory of iterates.

The material expounded in the first two chapters is close to that in the surveys
[29] and [61]. The present survey is supplemented by a number of results
obtained in recent years, but here the proofs are of a more sketchy character.
Therefore, we recommend that the reader first acquainting himself with the
subject turn to [29] and [61] in order to reproduce the omitted proofs or details
of them. Moreover, a nice exposition of the classical results with detailed proofs
is contained in Brolin’s survey [63], which played (along with Montel’s book
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[36]) a bridging role between the 1920s and the 1980s. Finally, despite the
existence of several modern surveys, we recommend that the reader become
directly acquainted with the fundamental memoirs [80]-[82] of Fatou.

The material in the last two chapters has not been presented before in the
survey literature. Chapter 3 is devoted to dynamics on the Julia set. Since
this dynamics bears a chaotic character, its description can be given only in
statistical terms. Ergodic theory provides an adequate language for studying
such phenomena. The methods of entropy theory, the techniques of unstable
manifolds, and the Sinai-Ruelle-Bowen thermodynamic formalism serve as ef-
fective tools of investigation. In §1 of Chapter 3 we present the elements of this
language and of these tools in a form convenient for later use. It is necessary to
have an invariant (or at least quasi-invariant) measure on the Julia set in order
to use ergodic theory. There are many such measures, and one of the basic
problems is to choose the most important of them, those that have interesting
interpretations from the point of view of dynamics, physics, function theory,
or geometry.

The first measure of this sort, considered by Brolin [63], was harmonic mea-
sure ux on the Julia set of a polynomial (it is the equilibrium measure in the
sense of electrostatics). Brolin showed that yu is invariant and gives the asymp-
totic distribution of the inverse images of a point under the iterations. This
measure was later interpreted from a different point of view as the unique max-
imal entropy measure ([102], [85]).

Another remarkable measure on the Julia set is the conformal measure con-
structed by Sullivan [138]. On the one hand, this measure is closely connected
with the geometry of the Julia set (it coincides with the Hausdorff measure of
maximal dimension), and on the other hand, it admits a natural interpretation
in the framework of the thermodynamic formalism.

In a recent paper Zdunik [146] proved that, as a rule, the maximal entropy
measure is singular with respect to the conformal measure. This result leads to
a rigorous proof that the Julia set is fractal (see the end of Chapter 3).

Closely connected with this circle of problems is Makarov’s paper [34], in
which unexpected geometric properties of harmonic measure were discovered
in a very general situation (without the participation of dynamics). However,
it is not excluded that these results have a hidden dynamical nature. Very
interesting work in this direction has been carried out by Przytycki and his
co-authors [123].

Chapter 4 is devoted to iterates of entire transcendental functions. The first
work in this area is also due to Fatou [84]. Subsequent development in the
1960s and 1970s is associated with the name of Baker ([53]~[58]). In presenting
the foundations of the theory in §§1 and 2, we concentrate attention on the
points specific to entire functions. A central place here is occupied by two
theorems of Baker that are given with proofs (simpler than Baker’s, but based
on the same ideas). In §3 we list the main pathologies that can be observed
for entire functions (wandering domains, etc.). On the same theme we present
elegant examples of Herman. The authors have used approximation techniques
to construct pathological examples ([14], [79]). This technique enables us, in
particular, to construct a wandering domain whose orbit does not tend to oo.

A class S of entire functions with dynamics similar to that of rational trans-
formations is described in §4. Here the picture on the Fatou set is exactly the
same as for polynomials ([14], [15]).
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In the concluding section we consider the exponential family z — expiz,
A€ C*, which is a transcendental analogue of the quadratic family z — e,
Interest in this family arose due to work of Misiurewicz [119], who proved that
J(exp z) = C. Nevertheless, as soon became clear, the chaotic nature of this
dynamics is not really so great if one is interested in properties typical with
respect to Lebesgue measure ([28], [125]). The dynamical effects demonstrated
by the exponential transformation are evidently impossible in the rational case.

The beauty of computer images of various sets generated by iterates is a
circumstance of no small importance that has attracted broad attention to holo-
morphic dynamics. The quality of these images is raised to the highest class in
the book [151] of Peitgen and Richter. This book will apparently soon appear
in a Russian translation. Until then the reader without access to the book can
get some idea of these astounding figures from reproductions of them in the
journal “V Mire Nauki” [13].

In conclusion we use this opportunity to express gratitude to E. A. Gorin, who
at one time acquainted us with the work of Cowen [66] and related questions.
We also thank V. A. Kaimanov, who read through the manuscript and made a
number of useful remarks, and L. K. Maslov for computer pictures.

CHAPTER I
INTRODUCTION

§1. Preliminary information from other areas

1.1. Conventions on general topological terminology. A perfect set is a com-
plete metric space without isolated points. A Cantor set is totally disconnected
perfect compact metric space. A continuum (in a topological context) is a con-
nected topological space with more than one point. A curve is a continuous
image of a closed interval. A Jordan curve is a homeomorphic image of a circle.
A Jordan domain is a domain bounded by a Jordan curve. A disk (annulus) is
defined to be a domain homeomorphic to a standard disk (annulus). The con-
nected components of a topological space will be called simply the components.

A transformation f: X — X of a metric space (with metric p) is said to be:
a) contracting if p(fx, fy) < p(x,y); b) strictly contracting if p(fx, fy) <
plx,y) forall x, ye X.

Unless stated otherwise, homeomorphisms of Riemann surfaces are assumed
to preserve orientation, and the spaces of continuous mappings that arise are
assumed to be equipped with the compact-open topology.

1.2, Riemann surfaces ([1], [20]). According to the Riemann-Koebe uniform-
ization theorem, an arbitrary simply connected Riemann surface is conformally
equivalent to the Riemann sphere C, the complex plane C, or the unit disk U.
The sphere C is called an elliptic Riemann surface. The plane C, the punctured
plane C* = C\ {0}, and the torus T? are called parabolic Riemann surfaces;
their universal coverings are conformally equivalent to the plane. The universal
coverings of the remaining Riemann surfaces are conformally equivalent to the
disk U. These surfaces are said to be hyperbolic. A domain D c C is hyperbolic
if and only if C\ D contains at least three points.

A hyperbolic Riemann surface S is representable as a quotient U/I", where
I' is a discrete group of conformal automorphisms of U. The group I' also
acts on the circle T = AU, partitioning it into the union of the set R of
discontinuity and the limit set A (see [20]). The quotient (UU R)/T is a
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Riemann surface with boundary containing S. Its boundary 0, = R/T is
called the ideal boundary of S. One says that S is a surface of finite type if
it is obtained from a compact Riemann surface by deletmg some points. An
equivalent definition is: the fundamental group = 1 (S) is finitely generated, and
the ideal boundary 0,S is empty.

On any Riemann surface S there exists a conformal metric pg of constant
curvature. This metric is said to be hyperbolic (or a Poincaré metric) in the case
of a hyperbolic surface S, Euclidean in the parabolic case, and spherical in the
case of C.

THE SCHWARZ LEMMA. Let f:V — W be an analytic mapping between
hyperbolic Riemann surfaces. Then either a) f is strictly contracting in the
Poincaré metric, in which case |Df(x)|| <1 forall x €V, orb) f isa cover,
in which case |Df(x)||=1, xeV.

1.3. Normal families. Montel’s Theorem (see [36]). A meromorphic func-
tion on a domain ¥V C C is an analytic mapping ¥ — C. We introduce the
spherical metric on C, and the compact-open topology in the space of mero-
morphic functions ¥V — C.

A family {f,} of meromorphic functions is said to be normal if it is pre-
compact in the indicated topology. This is equivalent to each of the following
properties holding for an arbitrary compact set K C V: a) the family { 5}
is equicontinuous on K; b) the spherical norm | D S|l of the differential is
uniformly bounded on K The basic test for normahty 1s

MONTEL’s THEOREM. Assume that there exist three meromorphic functions
g; on V with the following property: the equations f(2) = gj(z) and g, (z) =
g;/(z), k # j, do not have roots in V. Then the family {/,} is normal.

1.4. Branched covers. A mapping f: ¥V — W of two-dimensional surfaces
is said to be interior (in the Stoilow sense) if for each point x € V there
exists a neighborhood H in which f is topologically reducible to the form

PREPL , where k = deg, f € N. More precisely, there exist homeomorphisms
p: (H,x)— (U, 0) and y: (fH, fx) — (U, 0) such that yofop™': z — z*.
If k> 1, then x is called a branch point of index k (or a critical point), and
fx is called the pro;ectzon of the branch point (or the critical value).

An interior mapping is called a branched cover if each y € W has a neigh-
borhood G such that f reduces to the form z — z* in each component
(H, x) of the complete inverse image f —I(G »¥) (where k = deg, f depends

on xe€ f -! y) . In this case the points y € W that are not projections of branch
points have the same number of inverse images, and this number is called the
degree d = degf of the cover f (d can be oo). Here f is also called a
d-sheeted branched cover. A branched cover is said to be regular if its fibers
f “l(y) are orbits of the action of some group of homeomorphisms.

Denote by x, the Euler characteristic of a surface S.

THE RIEMANN-HURWITZ FORMULA. Let f:V — W be a d-sheeted
branched cover whose branch points have indices ki,...,k,, where d < co.
Then

n

Xy =dxy — Z(kj - 1.

J=1
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COROLLARY. Suppose that a domain D C C admits a finite-sheeted branched
cover f: D — D having branch points. Then D is szmply connected or infinitely
connected.

LeMMA 1.1. Suppose that V and W are domains on the sphere, and f:V —
W an interior mapping continuous on V. T} hen f isa finite-sheeted branched
cover if and only if f(OV)COW .

LEMMA 1.2. Let f: V — W be a finite-sheeted branched cover between hy-
perbolic domains on the sphere, with W simply connected. Assume that all
its branch points lie in a single fiber f “la. Then f ~'o consists of a sin-
gle point B, and there exist conformal mappings ¢: (V, ) — (U, 0) and
w: (W, a)— (U, 0) such that t//ofO(p"l:z»—»zd. ’

1.5. Quasiconformal mappings. The measurable Riemann theorem ([2],
[20]). Let V be a Riemann surface, and @ a measurable Riemann metric

on V. The metric @ can be reduced locally to the form y(z)|dz + f (z)dz)*,
where y and B are measurable functions with y(z) > 0 and |f(z)| < 1 ae.
Further, f(z) = k(z)exp2i©(z), where (1 + k(z))/(1 — k(z)) = K(z) is the
ratio of the axes of the infinitesimally small ellipse |dz + B(z)dz| = 1, and
©(z) is the direction of its major axis. The function K(z) is defined globally
on V and called the dilatation of the metric w. If |K(z)|,, < oo, then @ is
said to have bounded dilatation.

Two metrics @, and w, are proportional if there exists a measurable func-
tion y > 0 such that w, = yw, . A class of proportional Riemannian metrics
with bounded dilatation is called a conformal structure on V. The standard
conformal structure (with K(z) =1) on a Riemann surface V' will be denoted
by o, (or simply o when this does not lead to confusion).

Now suppose that ¥ and W are Riemann surfaces, p, and p,, are smooth
metrics on them generating the standard conformal structures, 4 C V', and
p: A — W, For z € A and & > 0 denote by m(z, ¢) and M(z,e) the
infimum and supremum of the quantities p,,(¢(z), ¢({)) for { € 4 and
py(z,{)=e. If there are no such points {, then let m(z, ¢) = M(z,¢)=1.
The mapping ¢ is said to be quasiconformal (or to have the Pesin property) if
the quantity :

M(z,¢€)
P(Z) 21—1»1(1) m(z, €)
is uniformly bounded on 4.

Let ¢o: V — W bea quasxconformal homeomorphism of Riemann surfaces:
Then:

a) p is a.e. dlfferentlable and hence ¢ acts naturally on the measurable
Riemannian metrics: @ — ¢« and on the corresponding conformal structures
Lo [, ‘

b) ¢ can be contmuoust extended to V' U9, V ‘

c) if 9,0, = g, (ie, 8¢ = 0¢9/0Z =0 ae), then ¢ is a conformal
mapping;

'd) for an arbitrary conformal structure z on V' there exist a Riemann surface
W and a quasiconformal homeomorphism ¢: ¥V — W such that ¢, = g,
(Morrey, 1938).

The last theorem is especially important for us in the case ¥V =C.
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THE MEASURABLE RIEMANN THEOREM (see [2]). For an arbitrary conformal

structure j on the sphere C there exists a quasiconformal homeomorphism ¢ =

¢": C — C such that ¢ u=0c. Thzs homeomorphism is uniquely determmed
by its values at three points.

The conformal structure u on C can be regarded as a point of the unit ball
in L™ (identify u with the function B(z)). The homeomorphism ¢, which
leaves the points 0, 1, and oo fixed, depends continuously on 4.

An interior mapping f: V — W is said to be quasiregular if in a neigh-
borhood of each noncritical point it is a quasiconformal homeomorphism with
uniformly bounded dilatation. If u is a conformal structure on W, then f
induces the conformal structure f“x on V.

1.6. Teichmiiller spaces (see [1], [2]). Let S be a Riemann surface on which
several isolated points are marked. Denote by Z the space of conformal
structures on S. Two structures u, v € Zg are said to be isotopic if there
exists a continuous family of quaswonformal homeomorphisms ¢,: S — §
that are the identity on the ideal boundary 9,S and are such that ¢, =id and
(p,).# = v at the marked points. The T ezchmuller space Ty of the surface S
with marked points is defined to be the space of classes of isotopic conformal
structures. The element of T corresponding to a conformal structure u is
denoted by 7. The space T can be endowed with the structure of a complete
metric space (the correspondmg metric is called the Teichmiiller metric) and the
structure of a complex analytic manifold. This manifold i is finite dimensional
if and only if S is a surface of finite type.

Assume that S is a disk or annulus with marked points, and that the rotation
group T acts on it analytically. Then the equivariant Teichmiiller space is de-
fined in the natural way: in the definition above require. that all the conformal
structures be T-invariant. In this situation we keep the notation T, with the
understanding that S remembers the action of the rotation group.

-§2. Elementary concepts of conformal dynamics

Let f:.S— S be an analytic transformation (endomorphism) of a Riemann
surface, and /" its nthiterate. The orbit (tra]ectory) of apoint z € S is defined
to be the set {f"z} > o » and the large orbitis {{:3In, m € N: flz=f"¢}.
The limit set of the orbit of z is denoted by o(z).

Let C be the set of critical points of f. It follows from the chain rule that

n—1

o kC is the set of critical points of the iterate f”, and Uk | f Cf is
the set of 1ts critical values. The last circumstance makes it important to study
the orbits of critical points.

A point « is said to be periodic if fa = a for some p, p is called a
period of «, and the finite orbit {a, = f "a}ﬁ;(; is called the cycle. The
smallest period is called the order of the periodic point « (of its cycle). A fixed
point (or equilibrium position) is defined to be a periodic point of order ‘1.

We introduce local coordinates in a neighborhood of the points «, and define
the multiplier(*) of the cycle {a, ﬁ;g (or of any point in this cycle) to be
A=f"(ey)+ f'(a,_,). This definition does not depend on the choice of local
coordinates, as is easily seen from the equality 4 = (f* )'(aO). A periodic
point (its cycle) is said to be attracting, repelling, or neutral in the following

(*)Editor’s note. The term eigenvalue is used in [61].
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respective cases: 0 < |A| < 1, |A] > 1, |A]=1.If 4 =0, then the cycle is said
to be superattracting. In this case one of the points a, is critical. Nonneutral
periodic points are called Ayperbolic points.

The trajectory of a point z € S is said to be Lyapunov.stable (in some metric
p)if ve>0 36 >0

p(z,0)<8=p(f"z, "0 <e, n=1,2,....

If in addition p(f"z, f"¢) — 0, n — oo, for all { close to z, then the
trajectory of z is said to be asymptotically stable. In particular, one can speak
of the stability of an equilibrium position. This concept does not depend on
the choice of metric.

We say that f is a transformation of finite order if f" =id for some n > 0.

A set A is said to be invariant if fA C A, and completely invariant if in
addition f “l4cAa. We say that the orbit of a point z is absorbed by an
invariant set if f"z € A for some n.

Two transformations f: V — V and g: W — W are said to be topologically
(conformally, quasiconformally, etc.) conjugate if there exists a homeomorphism
(conformal mapping, quasiconformal mapping, etc.) ¢: ¥ — W such that
pof = goe. If in this definition we waive the invertibility of ¢, then we
arrive at the concept of semiconjugate transformations. Under the action of ¢
the orbits of f pass into the orbits of g, the limit sets into the limit sets, the
cycles into the cycles, etc. However, the multipliers of cycles are not topological
invariants but only smooth invariants.

§3. Local theory

In this section we describe the dynamics of, and give a classification of, the
analytic transformations

fizedz+az 4+ (1.1)

in a neighborhood of the fixed point 0. The basic functional equations of
Schroder, Boettcher, and Abel arise in a natural way in connection with this
problem. A large part of the theory extends to the multidimensional case (see
[3], [43]), but we shall not dwell on it.

3.1. The hyperbolic case: |A| # 1. The set of such multipliers is also called
the Poincaré domain. This is the case of general position, in which all problems
are easily solved in entirety.

THEOREM 1.1. A transformation (1.1) with |A| # 0, 1 is conformally conju-
gate to the linear transformation z — Az in a neighborhood of zero. In other
words, in a neighborhood of zero there exists a univalent solution of the Schrider
equation o(fz) = Ap(z) (a Koenigs function).

The authors know four proofs of Theorem 1.1: two analytic proofs (construc-

tion of ¢ in the form lim, | A" 2)(%) (see [8], §37), or determination of
its Taylor expansion), and two geometric proofs ([29], [142]). The last proof
follows at once from the next result, which goes back to Julia.

LemMaA 1.3 ([8], [66]). Let f: U — U be a univalent endomorphism of the
disk. Then f is conformally conjugate to g|W , where g: C — C is a linear
transformation, and W is some invariant domain of it. A

( )In the case |1| < 1; the repelling case is reduced to this case by replacing f by f_l
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Since A is a conformal invariant, Theorem 1.1 gives a conformal classifi-
cation of germs of analytic transformation in a neighborhood of an attracting
fixed point. We note that from the point of view of quasiconformal classifica-
tion all these transformations are equivalent. The situation is analogous in the
repelling case.

We pass to the superattracting case.

THEOREM 1.2 ([4], [8]). An analytic transformation f: z — az"+ ., k>2,

a # 0, is conformally conjugate to z — Zina neighborhood of zero. In other
words, in a neighborhood of zero there exists a univalent solution of the Boettcher

equation ¢(fz) = (p(2))".

AN ANALYTIC PROOF: ¢(z)=lim,_ "z ([8], §40). See [29] for a geo-
metric proof based on the measurable Riemann theorem. e

Attracting and superattracting fixed points are asymptotically stable. It is
curious that this property is characteristic.

THEOREM 1.3 [32]. Zero is an asymptotically stable equilibrium position of
the transformation (1.1) if and only if || < 1.

Thus, in the analytic situation asymptotic stability is a coarse property that
depends only on linear approximation. The situation is quite different in the
investigation of Lyapunov stability, to which we proceed.

3.2. The problem of stability. This problem is very subtle in a neighborhood
of a neutral equilibrium position. Geometric considerations provide little here,
and analysis is complicated. But for a beginning we combine these points of
view:

THEOREM 1.4 [18]. The following properties are equivalent for a transforma-
tion (1.1) with |A|=1:

a) Zero is a Lyapunov stable equilibrium position.

b) f is topologically conjugate to a rotation in a neighborhood of zero.

c) f is conformally conjugate to a rotation in a neighborhood of zero, that is,
the Schréder equation ¢(fz) = Ap(z) has a univalent solution in a neighborhood
of zero.

Stable neutral equilibrium positions are also called Siegel points. The stability
of the zero equilibrium position depends first and foremost on the arithmetic
properties of the multiplier 4. Let us analyze it in greater detail. A neutral
fixed point is said to be a rational (or resonance) point if A is a root of unity,
and an irrational point otherwise. Theorem 1.4 gives us at once the

COROLLARY. Suppose that zero is a neutral rational fixed point of the trans-
Jormation (1.1). If this transformation has infinite order, then 0 is Lyapunov
stable.

A neutral irrational point can also be unstable if its multiplier can be approx-
imated in a pathologically rapid way by rational numbers [43]. The existence of
such multipliers can be established from simple Baire category arguments even
without explicit estimates:

THEOREM 1.5 ([29], [91]). Consider the one-parameter family of transforma-
tions f,: z+— Az + g(z), A€ T, in a neighborhood of zero. Assume that all the
f, have infinite order. Then the set A C'T of A such that zero is unstable is a
dense Gg-set.
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FIGURE 3. Leau Petals.

The simplest family to which Theorem 1.5 is applicable is iz Az 4+

. On the other hand, there are obviously nonlinear transformatlons with an
arbltrary multiplier 4 # 1 such that zero is stable, namely, f(z) = ( o(z)),
where ¢ is a univalent function in a neighborhood of zero, and (p(O) =0.I1t
is remarkable that for some A (more precisely, for almost all 1 € T) stability
always holds, independently of the higher terms:

SIEGEL’s THEOREM [18]. Suppose that A = e*™° and assume that there exzst

constants C >0 and k > 0 such that for all m, neN
|60 —m/n| > C/n . , " (L.2)

Then the transformation z — Az + az> + - is conformally conjugate to a
rotation. .

We remark that Bryuno found [147] a weaker arithmetic condition for lin-
earization of transformations z — ¢”?z + gz* + ... with arbitrary nonlinear
additional terms. Very recently Yoccoz proved that this condition is necessary
for linearization of the quadratic polynomial z — e*™?z + 22 ([145], [148]).

3.3. Dynamics in a neighborhood of a neutral equilibrium position. We as-
sume that f has infinite order. In a neighborhood of a Siegel point the picture
is obvious: each orbit is densely imbedded in a closed analytic curve. The com-
plete picture can also be described in the opposite case of a neutral rational
point. This was done by Leau (1897) and Fatou ([80], Chapter 2).

Suppose that the multiplier A is a gth root of unity. Then it turns out that
I = qs Leau petals L, touch the fixed point a = 0. These are disjoint Jordan
domains of arbltrarlly small diameter, having the followmg properties (Figure
3):

a) Away from zero the boundary 8L, is an analytic curve, and has a break
at zero with angle n//.

b) The petal L, is obtained from L, by a rotation through the angle

2n(k — 1)/1.
¢) The transformation f permutes the petals Lk, breaking them up into
cycles of order ¢.

d)If zeL, ,then f"z > a.

¢) 36 > 0 such that if |f"2z| < J forall ne N, then z € J,_, L,

The Leau flower of the inverse function f~' is obtained from the Leau
flower of f by a rotation through the angle n//. The number of petals is
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determined by the Taylor expansion of f, namely, if f9z =z +a, lzl e ,
a, 41 # 0, then / is the number of petals. By Lemma 1.3, the transformation
f4 |L, can be linearized. It turns out that in this case g: z — z +1, and
w is the right half-plane. In other words, there exists a c»formal mapping
9. L, — {z: Rez > 0} that solves the Abel equation ¢(f?z)=¢(z)+1.

As always, the Abel function ¢ can be found analytically [80] and geomet-
rically ([29], [142]). Fatou determined an asymptotic expression for ¢ from
which it follows that each f?-orbit in L, lies on an invariant analytic curve
that is a bisector at zero.

We note in conclusion that neutral rational points admit complete classifi-
cation, both topological (the multiplier and the number of Leau petals form a
complete invariant) and conformal [10].

There has been little study of the dynamics in a neighborhood of an unstable
irrational equilibrium position. Even the question of whether it can attract
some orbit is open. The only result on this theme known to the authors was
obtained by Fatou:

THEOREM 1.6 ([82], p. 241). Suppose that Al =1 and A # 1. Assume that
the domain V has the property that fV NV # @&. Then the orbit {f" V}
cannot converge uniformly to zero.

§4. Analytic transformations of hyperbolic Riemann surfaces

THEOREM 1.7 (see [140]). Let f: V — V be an analytic transformation of a

hyperbolic Riemann surface. Then one of the following posszbzlztzes holds:
) S has an attracting or superattracting fixed poznt a €V to which all orbits

{r" Z}n—O converge.

b) All orbits tend to infinity, i.e, p,(a, f"2z) — 0o, n— oo, for every point
aeV.

c) [ is conformally conjugate to an irrational rotation of (i) a disk, (ii) a
punctured disk, or (iii) an annulus.

d) f is a conformal automorphism of finite order, i.e., f? =id for some p.

CoOROLLARY. Suppose that V is a hyperbolic Riemann surface, and f:V —
V' is an analytic transformation of infinite order. Then f has at most one fixed
point. If this point is neutral, then f is conformally conjugate to an irrational
rotation of the disk U.

Theorem 1.7 can be refined in part b) when there is additional information
about the Riemann surface V' and about the boundary properties of f':

THEOREM 1.8. Let V' be a hyperbolic domain on the sphere, and f:V — V
an analytic transformation continuous up to the boundary. Assume that the set of
Jfixed points of f on OV is totally disconnected. Then in case b) of Theorem 1.7
there exists a fixed point a € 3V such that f"z - a, n— oo, forall zeV.

In the case when V' is bounded by finitely many Jordan curves, no assump-
tions are needed in Theorem 1.8 about the boundary properties of f. The
corresponding result for V' = U is called the Denjoy-Wolff theorem ([8], §43),
and the point a to which all orbits converge is called the Denjoy-Wolff point.

An invariant set V is said to be absorbing if it absorbs all orbits. A set D is
said to be fiundamental if it intersects each orbit in a point.
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THEOREM 1.9 [66]. Let f: U — U be analytic endomorphism that does not
reduce to a rotation. Assume that its Denjoy-Wolff point « is not superattracting.
Then f has a simply connected absorbing domain V' to which the restriction of
f is univalent. Further, the set D =V \ fV is fundamental.

We remark that if o € U, then V is simply a small disk about «, and D is
an annulus. ‘

CHAPTER 2
TOPOLOGICAL DYNAMICS OF RATIONAL ENDOMORPHISMS

§1. The Julia set: initial notions

1.1. Definition and simplest properties. Let us consider an analytic endo-
morphism f: C — C of the Riemann sphere. It is given by a rational function
z — P(z)/Q(z). Denote by d = degf the degree of f, which is equal to
max(deg P, deg Q). Each point of the sphere has d inverse images, counting
multiplicity.

If d=1,then f:zw (az+ b)/(cz+d) is a Mobius transformation. The
classification (hyperbolic, parabolic, and elliptic cases) and investigation of the
dynamics of such transformations are elementary and well known (see [12],
[29]). Further, we assume unless otherwise stated that d > 1.

The Fatou set F = F(f) (or set of normality) is defined to be the maximal
open set-on which the family {f"} of iterates is normal. It follows immediately
from the definition that F(f) is completely invariant and F(f") = F(f) for
n e N. If D is an invariant hyperbolic domain on the sphere, then it follows
from Montel’s theorem that D C F(f).

The Julia set J = J(f) is defined to be the complement of the Fatou set.
We note at once that attracting cycles lie on the Fatou set, and repelling cycles
lie on the Julia set.

THEOREM 2.1 (Fatou, Julia). The Julia set J(f) is a nonempty perfect com-
pletely invariant compact set, and J(f") = J(f) for n € N. Either J(f) is
nowhere dense, or J(f)=C.

To illustrate how Montel’s theorem works, we prove the last assertion. Sup-
pose that J(f) contains a domain D . Then, by Montel’s theorem, U;io "D

is the whole sphere, possibly less two exceptional points. But J{(f) > s, /"D
=C.

1.2. Examples of Julia sets with simple structure. Julia sets have an ex-
tremely varied and complicated structure. Numerous confirmations of this will
be given below. However, we now dwell on exceptional examples that never-
theless serve as good models for the dynamics on J(f).

EXAMPLE 2.1. f,:z+ z? . In this case J(f) = T, the unit circle, and F(f)
consists of the two components U and C \ U. In the first of them the orbits
tend to zero, and in the second they tend to co. The dynamics on J(f) beara
complicated chaotic character, which can be described only in statistical terms
(see [46]).

ExAMPLE 2.2. The Tchebycheff polynomials P,: z + cos(d arccos z) . They
satisfy the functional equation cosdz = P (cos z). With the help of this equa-
tion it can be shown that J(P,;) =[-1, 1]. The set F(P,) consists of a single
component, in which all orbits tend to co. But chaos is observed on the interval
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[-1, 1]. This phenomenon for P,: z — 2z* — 1 was discovered by Ulam and
von Neumann on one of the first computers (1947),

The first example of a function for which J(f) = C is usually ascribed to
Lattes (1918), although it was already known to Boettcher [4]:

ExAaMPLE 2.3. Let P be the Weierstrass elliptic function with periods
{1, 7} . Then there exists a rational solution of the functional equation (see [12])
PB(nz) =R, (B(z)), n€N, n>2. From the point of view of dynamics this
equation means that the function P semiconjugates the transformation z +— nz
of the torus and the rational endomorphism R, . Since the repelling cycles of
the transformation z — nz are dense on the torus, the repelling cycles of the
endomorphism R, o are dense in C. Consequently, J (R, )= C.

1.3. The exceptlonal set. The exceptional set E of a ratlonal endomorphism
f is defined to be the largest finite completely invariant set.

THEOREM 2.2 (Fatou, Julia).

a) The exceptional set exists (E can be &) and consists of at most two points.

b) If card E = 1, then f is conformally conjugate to a polynomial.

c) If card E = 2, then [ is conformally conjugate to z — 7z

d) E c F(f) and, what is more, the exceptional points are superattracting
periodic points (of order 1 or 2).

e) If V is a neighborhood of a point z € J(f) disjoint from E, then
Upeo SV =C\E.

1.4. Denseness of repelling cycles. Fatou showed that a rational endomor-
phism can have only finitely many nonrepelling cycles. We discuss this result
in greater detail in the next section, but now we assume it and prove a theorem
that can serve as an alternative definition of the Julia set (and was such for
Julia; the approach we are following is due to Fatou).

THEOREM 2.3. (Fatou, Julia). The Julia set is the closure of the set of repelling
periodic points.

PRroOOF. Let a € J(f). We want to approximate a by repelling periodic
points. Since J(f) is a perfect set, it can be assumed that a is not itself
periodic and not a critical value. Consequently, a has two different inverse
images a, and a, with a; # a, and in a neighborhood ¥ > a there exist

single-valued branches g, and g, of the function f ~! such that g(a) = a;.
Let g,(z) = z. By Montel’s theorem, in every neighborhood of a there is a
root a of some equation f?(z) = g,(z). The point « is periodic. Application
of the theorem on the finiteness of the number of nonrepelling cycles concludes
the proof. e

1.5. Denseness of inverse images and mixing. The next result is easy to derive
from Theorem 2.3 and Montel’s theorem.

THEOREM 2.4 (Fatou, Julia). Suppose that a € J(f), V is a neighborhood of
a, and K is a compact set not containing exceptional points. Then there exists
an N such that K c f"V for n>N.

COROLLARY 1. The orbit {f "z}:';o is Lyapunov stable if and only if z €
F(f).

Proor. The stability of the orbit of a z € F(f) follows from the equiconti-
nuity of the family {f"} in a neighborhood of z, and the stability of the orbit
of a z € J(f) follows from Theorem 2.4. @
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Note that this corollary can also be taken as the definition of the Fatou set

-and the Julia set.

COROLLARY 2. Suppose that b is not an exceptional point, and let ¢ > 0.
Then there exists an N such that for n > N the complete inverse image f~"b
is an e-net for the Julia set.

A continuous transformation f of a set X is said to be topologically mixing
if for each two neighborhoods U, V C X there exists an N such that £ "Un
V # @ for n > N. Baire category arguments lead to the conclusion that
a topologically mixing transformation has a dense orbit (if X is-a complete
separable metric space).

CoROLLARY 3. A4 rational endomorphism is topologically mixing on the Julia
set. ‘ .

The facts presented above give an initial idea of the chaotic unstable nature
of the dynamics on the Julia set. A more complete understanding emerges if
we look at the problem from the point of view of ergodic theory, to which the
next chapter is devoted.

§2. Dynamics on the Fatou set

In this section we present the most complete part of the theory: a description
of the dynamics on the Fatou set. A classification of periodic components
is given in 2.2-2.5. In 2.6 the theorem on finiteness of the number of such
components and the number of nonrepelling periodic points is discussed. In
2.7 a proof of Sullivan’s theorem is sketched, and a summary is given in the
concluding subsection. _

2.1. The components of the Fatou set. Let D be a connected component of
the Fatou set. We observe first of all that D is a hyperbolic domain, since
its complement C\' D contains the continuum Julia set. Further, since F(f)
is invariant, fD is contained in some component D, of D, and since J(f)
is invariant, it follows that f(dD) c oD,. By Lemma 1.1, f: D—-D isa
branched cover. Consequently, / maps D surjectively onto D, .

TueoreMm 2.5 (Fatou, Julia). Let V‘I;é @ be a completely invariant union of
components of the set F(f) (in particular, it is possible that V = F(f)). Then
V' consists of one, two, or countably many components.

In the examples above, the Fatou set consists of one or two components, but
later it becomes clear that F(f) consists of a countable number of components
as a rule (for the simplest example z +— 22— 1 see 2.3).

The next result is closely connected with Theorem 2.5.

THEOREM 2.6 (Fatou, Julia). Suppose that the set F(f) has a completely
invariant component D . Then ‘ :

a) all the remaining components of - F(f) are simply connected,

b) J(f) = 0D. If there are two completely invariant components D, and
D,, then F(f)=D,UD,.

The following conjecture was formulated by Makienko by analogy with a the-
orem of Abikoff [52] relating to Kleinian groups. Let D, be the components of
F(f)y. If J(f)=U,0D,, then among these components there is a completely
invariant component. ~
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2.2. Schrider domains and Boettcher domains. We consider an attracting or
superattracting cycle o = {ak}igg of order p. The set A(a) of points whose
orbits tend to « is called the domain of attraction of the cycle. The domain of
attraction is open, but is not connected in general, i.e., is not a domain in the
usual understanding. It is not hard to show that A(a) is the union of certain
components of the Fatou set. By Theorem 2.5, the number of these components
isequal to'1, 2, or oco.

The components D(a,) of the set A(c) containing the points «, will be
called Schréder domains if o is an attracting cycle, and Boeticher domains if
« is a superattracting cycle. By the corollary to Theorem 1.7, the Schroder
domains (respectively, Boettcher domains) D(«,) are pairwise distinct. These
domains can be constructed with the help of the following iteration construction.
Let B, be a small disk about «, , and let B, be the component of the complete

inverse image f B contammg o . Then By,cB, c:,and U:io B, =
D(ak)
The union UZ;& D(a, ) is called the domain of immediate attraction of the

cycle a. We formulate a result that, despite its simplicity, is one of the central
points in the classical theory.

THEOREM 2.7 (Fatou, Julia). The domain of immediate attraction D(a) of
an attracting cycle o contains a critical point whose orbit is not absorbed by the
cycle a.

PrOOF. Method 1 gives a proof of only the first part of the theorem. If D(a)
does not contain critical points, then f7: D(a;) — D(a;,) is an unbranched
cover. Consequently, f? is a locally isometric transformation in the Poincaré
metric of the domain D(a,). On the other hand, |Df”(a,)| < 1.

Method 2. We use an iteration construction of the Schréder domain: D(e ) =
Usneo B, . If the conclusion of the theorem does not hold, then in view of Lemma
1.2 the mapping f”": B, — B, is an analytic isomorphism. Let us consider
the inverse mapping f °": By — B, . By Montel’s theorem, it is normal, con-
tradicting the fact that | Df """ (a,)|| = 00, 1 — o0. ‘

See [29] about Method 3, which uses a Koenigs function. @

The Riemann-Hurwitz formula gives us

COROLLARY 1. Schrdder domains and Boettcher domains are either simply
connected or infinitely connected.

COROLLARY 2. A rational endomorphism f: C — C of degree d has at most
2d — 2 attracting and superattracting cycles.

The question of whether this estimate is sharp, which remamed open for
almost 60 years, was recently solved by Shishikura [153].

ExXAMPLE 2.4, Let p and d — | be relatively prime positive integers, and let
A =exp(2ni/p). We consider the family of functions

d—1
f(z) =z (1+¢)+z _,
1+ (l—e)iz
Obviously, the functions f, commute with the rotation z — zexp(2ni/(d—1)).
A simple analysis shows that if ¢ is sufficiently small, then f has d — 1 at-
tracting fixed points near zero, and d — 1 attracting cycles of order p near oo.
Thus, f, has 2d — 2 attracting cycles in all.

e>0.
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The analogue of Theorem 2.7 for Boettcher domains is

THEOREM 2.8 (see [29], §1.9). Let D(a) = Ui;é D(a,) by acycle of Boettcher
domains. Then the following alternative holds:

a) the transformation f7: D(ay) — D(«y,) is conformally conjugate to the
transformation z — z" of the disk U, n>2;

b) one of the domains D(w,) contains a critical point whose orbit is not
absorbed by the cycle o .

With each attracting cycle o = {o, }i;é we can associate a torus with marked
points. Namely, let S be the space of large orbits lying in the set Ay(a) =

Aa)\Uro f "o, The space S is equipped with the natural structure of a
Riemann surface such that the projection 7: Aj(a) — S is an analytic branched
cover. The branch points of this cover are critical points of the functions f”",
n € N. Consequently, there are only finitely many projections of the branch
points, and these we mark on S'. To understand the topology of S we observe
that § is obtained from a fundamental annulus (see Chapter 1, §4) by gluing
together the boundary components. Thus, S is a torus.

The construction presented here is completely analogous to the construction
of the Riemann surface associated with a Kleinian group. In the case of super-
attracting cycles it does not work, because in Boettcher domains the large orbits
are nondiscrete. It is easy to see with the help of Theorem 1.2 that there exists
in each Boettcher domain a foliation with singularities (at critical points of the
functions /") such that each large orbit densely fills in a countable number
of leaves. Nevertheless, Sullivan [140] associated with each cycle of Boettcher
domains a Riemann surface (a small annulus included between two leaves, or
a punctured disk) with marked points (the traces of the large orbits of critical
points) and an additional structure determining a foliation: the action of the
rotation group. .

2.3. The domain of attraction of infinity for a polynomial. A polynomial is
a rational endomorphism for which f oo = {o0}. Consequently, oo is a
superattracting fixed point that is exceptional in the sense of 1.3. The entire
specific nature of polynomial endomorphisms is connected with the existence
of such a point.

THEOREM 2.9. (Fatou, Julia). Let f be a polynomial. Then the Boettcher
domain D(oo) is a complete invariant and coincides with the domain of attrac-
tion A(oo). Further, J(f) = 8D(c0), and all the bounded components of the
Fatou set are simply connected.

Proor. Complete invariance holds because each component of the complete
inverse image f "ID(oo) must contain a pole. The remaining assertions follow
from Theorem 2.6. ©

For a polynomial, it is easy to determine from the behavior of the orbits of
critical points whether the Julia set is connected.

THEOREM 2.10 (Fatou, Julia). The Julia set of a polynomial is connected if
and only if the orbits of all finite critical points do not tend to oo. Further, the

transformation f|D(oo) is conformally conjugate to the transformation z — P
of the disk U.

Proor. The connectedness of the Julia set is equivalent to the simple con-
nectedness of the domain D(co). Applying the Riemann-Hurwitz formula and
Theorem 2.8 to this domain, we get what is needed. e
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FIGURE 4. Dynamics of the polynomial z — -1

EXAMPLE 2.5. f:z — -1 (Figure 4). The points 0 and —1 form a
superattracting cycle of second order. Consequently, the Julia set is connected.
The Boettcher domains D(0) and D(—1) are simply connected, and f maps
D(—1) univalently onto D(0). Consequently, there exists a component D #
D(—1) that is also mapped univalently onto D(0). There are also two inverse
images for the component D—the components D, and D, , and so on. Thus,
the domain of attraction of the cycle e = {0, —1} consists of countably many
components. It will be clear later that the Fatou set F(f) is the union A(a)U
D(oc0) (see §3, Theorem 2.19).

2.4. The Leau bouquet. First of all we note that the neutral rational cycles
lie on the Julia set, since they are not Lyapunov stable (see the corollaries to
Theorems 1.4 and 2.4). With each point of a cycle it is possible to associate
a Leau flower in such a way that their union is invariant. This union will be
called a Leau bouguet. The local dynamics in a neighborhood of the cycle can
be described in a natural way with the help of the Leau bouquet.

The domain of attraction A(a) of a neutral rational cycle is defined to be
{z: f"z = o, n— 00} \Upjep S "a. It follows from the local picture that
the orbit of an arbitrary point z € A(a) is absorbed by the Leau bouquet.
Consequently, A(«) is nonempty, open, and contained in the Fatou set (this
is the reason the neutral rational cycles are important for understanding the
dynamics on F(f)). The components of the set A{c) containing the Leau
petals will be called Leau domains, and their union D(«) will be called the
domain of immediate attraction of the cycle- . Each Leau domain contains
one Leau petal. '

Associated with each cycle V' of Leau domains is a Riemann surface S (the
space of large orbits of the restriction f|V) with marked points (the orbits
of the critical points). The natural projection n: ¥ — S is a branched cover
that branches at the critical points and their inverse images of all orders. Lin-
earization with the help of an Abel function (see Chapter 1, 3.3) shows that
S=C".

TuEOREM 2.11 ([81], §30). Each cycle of Leau domains contains a critical
point of f .
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Proor. In the contrary case z: V' -» § is an unbranched cover, which is
impossible, since V' is hyperbolic and S parabolic. e

The following result, which follows from Theorem 1.6, gives an important
refinement of Theorem 1.8.

THEOREM 2.12, Let [ be a rationd( fe‘n,domorphism, and D a periodic com-
ponent of F(f) in which all orbits tend to the cycle of a periodic point o € 8D .
Then o is a neutral rational point, and D is its Leau domain.

Neutral rational cycles can be removed by a small perturbation of the func-
tion. However, their study is important for bifurcation theory (see §7).

2.5. Siegel disks and Arnol'd-Herman rings. Let o be a neutral irrational
cycle. The terms Siegel cycle and Siegel periodic point do not need additional
explanation (see Chapter 1, 3.2). It follows from Theorem 2.4 that « is a Siegel
cycle if and only if a € F(f). The components of F(f) containing the points
o, are called the Siegel disks D(a,). We use the corollary to Theorem 1.7.

THEOREM 2.13. The Siegel disks D(«,) are simply connected. The transfor-

mation f?: D(ay) — D(ay;,) is conformally conjugate to an irrational rotation
of the disk U.

It remains for us to consider one more type of periodic domain, which is
related to Siegel disks. A periodic domain D of order p is called an Arnol’d-
Herman ring if it is doubly connected, and the transformation f?: D — D is
conformally conjugate to an irrational rotation of the standard annulus A(r, 1).
Siegel' disks and Arnol'd-Herman rings are also called singular domains. In
contrast to the types of domains considered above, Arnol'd-Herman rings are
not connected with periodic points. This makes their study more difficult. We
remark also that in view of Theorem 2.9 polynomials do not have Arnol'd-
Herman rings. ‘ ‘

EXAMPLE 2.6 (Herman [91]). f: z — ¥ Z%(1 —az)/(z—-a), |a] < 1. The
circle T is f-invariant, and for small |g| the restriction of f|T is a diffeo-
morphism. It follows from a theorem of Arnol'd ([3], §12) that for suitable 6
and a there exists an invariant neighborhood ¥ of T on which the transfor-
mation f: V — V is conformally conjugate to a rotation of an annulus. The
component of F(f) containing ¥ is an Arnol'd-Herman ring.

A Riemann surface is also naturally associated with the cycle of a singular
domain: a disk or annulus with marked points (the traces of large orbits of
éritical points) and with the action of the rotation group ([140]; see also [29]).

 THEOREM 2.14 (see [29], §1.14). a) Let D be a singular domain. Then 6D
is contained in |J w(c), where ¢ runs through the set of critical points lying in

J(f). : .
b) If o is a non-Siegel neutral cycle, then there exists a critical point ¢ € J(f)
such that o C w(c)\Usey f"c.

'COROLLARY ([81], §30). If the closure of the union of the orbits of the critical
points does not separate the plane, then there are no singular domains.

Theorem 2.14 can evidently be refined as follows:
a) each component of the boundary of an invariant singular domain with

multiplier satisfying (1.2)(3) contains a critical point;

(3)Herman [149] showed that this condition is essential.
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b) if « is a non-Siegel neutral cycle, then there exists a critical point ¢ whose
orbit tends to o C

THEOREM 2.15 [92]. Suppose that f: z — 2’ +¢ and {Dk},‘;;é is a cycle of

Siegel disks with multiplier satisfying (1.2) (3 ). Then 0 €|JoD,.

2,6, The finiteness theorem. Theorems 2.7 and 2.11 show that the total
number of cycles of Schroder domains, Boettcher domains, and Leau domains
does not exceed 24 —2 . Fatou established that, in fact, the total number of non-
repelling cycles is finite ([81], §30). With this goal he perturbed the function in
such a way that half its neutral cycles became attracting. Sullivan [140] proved
the finiteness theorem for Arnol'd-Herman rings by quasiconformal deforma-
tion techniques. However, the question of sharp estimates for the number of
cycles of various types remained open until very recently, when it was answered
by Shishikura [153].

Let N, be the number of attracting cycles, N, the number of cycles of
Leau domains (there can be more of them than of neutral rational cycles), N,
the number of neutral irrational non-Siegel cycles, N the number of cycles of

Siegel disks, and N, the number of cycles of Arnol'd-Herman rings.

THEOREM 2.16 [153]. The following estimates hold.
N+ N, +N,+Ng+2N,, <2d—-2, N, <d-2.

Each collection of numbers satisfying these estimates can be realized for some
rational function.

We discuss a proof of Shishikura’s theorem in §9.

2.7. The absence of wandering components. A set X is said to be wandering
if f"Xnf™X =@ for n>m > 0. The theoretical possibility of the exis-
tence of wandering components of the Fatou set F(f) was the main difficulty
in investigating the dynamics of F(f). Sullivan removed this obstacle at the
beginning of the 1980s.

A quasiconformal deformation of an endomorphism f is defined to be a
family of rational endomorphisms f, = ¢, 0 f o‘¢1—1 such that f,o = f, and

9,: C — C is a family of quasiconformal homeomorphisms that depend con-
tinuously on the point ¢ in some manifold (perhaps infinite-dimensional).

THEOREM 2.17 ([136], [139]). The Fatou set F(f) of a rational endomor-
phism does not have wandering components.

SKETCH OF THE PROOF. Let D be a wandering component, and let & =
Upeo/ "(Uno S " D). We consider the space S of large orbits lying in & .
With one exception (which we discuss below) S can be equipped with the struc-
ture of a Riemann surface in such a way that the neutral projection n: @ — .S
is a branched cover. It can be shown that S is a surface of infinite confor-
mal type. Consequently, the Teichmiiller space T is infinite-dimensional, and
hence for each N there exists a continuous family of conformal structures x,

on S (te RN) such that the mapping u, — &, € T is injective.
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Each structure u, can be lifted to an f-invariant conformal structure on &,
and then it can be extended to the whole Riemann sphere in the standard way.
We obtain a family v, of f-invariant conformal structures on C. By the mea-
surable Riemann theorem, there exists a continuous family of quasiconformal
homeomorphlsms 9, C — C such that (¢ ).V, = 0. Then the endomorphisms

ft 9,0 fop . preserve the standard structure o, and thus are rational.
We have constructed a quasiconformal deformatron Js te RY , of the en-

domorphism f. If N > 2d — 2, then there must exist a continuum X c R”
such that f = f for ¢, v € X. It remains to show that there are no such
continua, ThlS follows easily from the lemma below. e

The exceptlon mentioned in the beginning is a wandering annulus D such
that deg(f"|D) — 0o, n — co. Fortunately, a contradiction can be reached by
elementary means in thls case ([139]; see also [29], [142]).

In conclusion we formulate the lemma promised above. Let G, be the group
of homeomorphisms of J(f) that commute with f.

LEMMA 2.1. The group G, is totally disconnected.
2.8. The complete picture of the dynamics.

THEOREM 2.18 [136]. An arbitrary orbit in the Fatou set is absorbed by some
cycle of Schréder domains, Boettcher domains, Leau domains, Siegel disks, or
Arnol'd-Herman rings. There exist only finitely many cycles of components.

Proor. By Theorem 2.17, an arbitrary orbit in the Fatou set is absorbed
by some cycle of components {f "D}ﬁ;é . Theorem 1.7 is applicable to the
transformation f”: D — D. In case a), D is a Schroder domain or a Boettcher
domain. In case b), D is a Leau domain, as follows from Theorems 1.8 and
2.12. In cases (i) and (iii), D is a singular domain. The case (ii) is excluded,
because the Julia set is perfect, and d) is excluded for obvious reasons.

Thus, a rational endomorphism on the Fatou set admits five different types
of dynamics. e

§3. Axiom A4

In this section we present initial notions about rational endomorphisms sat-
isfying Axiom 4. The importance of such endomorphisms has to do with the
fact that they are “often encountered” and “cannot be removed by small per-
turbations” (see §6). The study of these endomorphisms is made easier by the
fact that many ideas and methods in the general theory of dynamical systems
are directly applicable to them. This theme will be developed more deeply in
Chapter 3.

3.1. Definition. A rational endomorphism f is said to be expanding on
an invariant compact set if there exist a nelghborhood V > X and constants
C>0 and A > 1 such that:

() fT'Xnv=x;

() |Df"(z)||>CA", ze X, neN.

We discuss this concept from more general points of view in Chapter 3.

THEOREM 2.19 ([81], §31). The following properties of a razzonal endomor-
phism [ are equivalent:
a) f is expanding on the Julia set.
b) The orbits of its critical points tend to attracting or superattracting cycles.
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Further, the orbits of all points in the Fatou set tend to attracting or superat-
tracting cycles.

Proor. The implication a)=- b) and the concluding part of the theorem fol-
low from the description of the dynamics on the Fatou set (although the com-
plete picture is not necessary, of course: Fatou did not know it). To prove the
implication b)=a) we remove the orbits of the critical points from the sphere,
along with invariant neighborhoods of the attracting cycles. The domain S so
obtained is hyperbolic and f ~Linvariant. e

The multivalued mapping f ~!. 8 S can be lifted to a single-valued map-
ping of the universal covering U. Using Schwarz’s lemma, we get that f|J is
expanding in the hyperbolic metric pg, and hence in the spherical metric.

One says that a rational endomorphism f satisfies axiom A, or is hyperbolic,
if properties a) and b) of Theorem 2.19 hold. This terminology was taken from
the general theory of dynamical systems (see [38]).

3.2. Symbolic dynamics on a Cantor Julia set. Symbolic dynamics is an
encoding of orbits by sequences of symbols. We dwell in greater detail on this
topic in Chapter 3; here, however, (and in the next subsection) we consider the
simplest situations, which were known already to Fatou ([80], p. 252).

Let Z+ be the space of one-sided sequences {B; } _o in d symbols. Equipped
with weak topology, it becomes a Cantor set. The (one-sided topological)
Bernoulli shift is defined to be the transformation o: ( BoByv) = (B By )

of T}

THEOREM 2.20 ([81], [63]). Assume that a rational endomorphism [ satisfies
axiom A and that the Fatou set F(f) consists of a single component. Then the
Julia set J(f) is a Cantor set, and the restriction f|J is topologically conjugate
to the Bernoulli shift o .

The idea of the proof is to find an f ~!invariant neighborhood A of J such
that f~'A=UL, A, where A,NA; =@, i # j, and f maps A, univalently
onto A. We now encode the trajectory of an arbitrary point z € J by a
sequence of 4 symbols as follows: z — (ByBy---) if fze Aﬂ , h €N, This
encoding gives the desired conjugacy of f|J and o. '

In particular, for quadratic polynomials foizm— z2+c the Julia set is either a
Cantor set or a connected set, depending on whether or not the orbit { f }Zo 0
tends to oo (see 2.3). If ¢ is real, then it is easy to determine which snuatlon
is realized: for ¢ € [-2, 1/4] the Julia set J( f.) is connected, and outside this
interval it is a Cantor set (further, if ¢ < -2, then J(f)) is “linear”, i.e., lies on
the line R, while if ¢ > 1/4, then J(f)) is a planar Cantor set). And what
is the structure of the set of complex values ¢ for which J(f) is connected?
See §7 about this.

3.3. Invariant quasicircles. A quasicircle is defined to be a Jordan curve that
is a quasiconformal image of the circle T.

THEOREM 2.21 ([82], [51]). Let U C V be two annuli bounded by smooth
Jordan curves, and let f: U — V be a d-sheeted analytic cover. Then the set
J={z: f"ze U, neN} is a quasicircle, and f |J is topologically conjugate
to the transformation z v— P of the circle T.
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It can be deduced from this theorem that if f satisfies axiom A4 and has
a completely invariant component of its Fatou set, then the remaining compo-
nents are bounded by quasicircles. In particular, if f consists of two compo-
nents, then J(f) is a quasicircle. The simplest illustration is the polynomial
z+ z* + ¢ for small || . How small? See §7.

In conclusion we mention that the Julia set can contain a continuum of com-
ponents, each a Jordan curve:

ExAMPLE 2.7 (McMullen [109]). f: 2z — z* + ez . For small le| the set
J(f) is homeomorphic to the product of a Cantor set and the circle.

3.4. Quasihyperbolic endomorphisms. A rational endomorphism is said to
be quasihyperbolic if the orbit of each critical point tends to an attracting cycle
or is absorbed by a repelling cycle. The simplest nonhyperbolic examples are
the Tchebycheff polynomials and the Lattes endomorphisms (§1.2). The next
result is a justification for the name.

THEOREM 2.2, ([76], [142]). Let f be a quasihyperbolic rational endomor-
phism. Then in a neighborhood of the Julia set J(f) there exists a Rieman-
nian metric y with singularities at a finite number of points X; such that
IDf(2)ll, 2 A > 1 for z € J(f)\ {x;}. All orbits on the Fatou set tend to
attracting cycles.

An important class of quasihyperbolic endomorphisms will be considered in
more detail in §5. ‘

§4. The boundaries of invariant components of the Fatou set

In this section D is an invariant simply connected component of the Fatou
set, and y: U — D is a conformal mapping. The study of the boundary 6D
is equivalent to the study of the boundary properties of .

4.1. Local connectedness. By Carathéodory’s theorem ([12], [76]), the fol-
lowing conditions are equivalent:

a) The boundary 0D is locally connected.

b) The conformal mapping y: U — D is continuous up to the boundary.

c) 8D is a closed curve.

THEOREM 2.23 (Fatou, 1923). Let D be an invariant simply connected com-
ponent of the Fatou set F(f). If the endomorphism f|0D is expanding, then
8D is a curve.

 This curve can have an extremely complicated structure, as shown by the
example J(f)=98D(o0) for a polynomial f (Figures 1, 2), although there are
also cases of a simple topology (see 3.3).

Theorem 2.23 can be extended to the quasihyperbolic case. However, it is
false in the general case. ‘

EXAMPLE 2.8 ([29], [73]). f: z — €™z + z*, where 6 is such that the
neutral fixed point 0 is not a Siegel point. Then the Julia set J(f) = 8 D(o0)
is not locally connected.

4.2. Blaschke products. The endomorphism f: D — D is conformally con-
Jjugate to the finite-sheeted branched cover B = !//_1 ofow:U— U. Such
covers are easy to describe: they are the so-called Blaschke products.

B ~,1d 27 % =1 1
@= 7z, W=t <t




THE DYNAMICS OF ANALYTIC TRANSFORMATIONS 587

We arrive naturally at the problem of classifying Blaschke products from the
point of view of dynamics. Fatou devoted the whole third chapter of the first
memoir [80] to this problem. :

Since the domains U and C\ U are B-invariant, we have J(B) c T, and
the set F(B) consists of one or two components. By the Riemann-Hurwitz
formula, each of U and é\ﬁ contains d — 1 critical points. Thus, all the
critical points are contained in the Fatou set. According to Theorem 1.8, the
orbits of a point z € U tend to a fixed pomt a € U. By the symmetry prmmple
the orbits of points z € C\ U tend to @ !, The following cases are ‘possible
(under the assumption that d > 1):

1) @ € U is an attracting point. Then J(B) =T, and F(B) consists of two
completely invariant components. Further, B satisfies axiom A.

2) a €T is an attracting point. Here F{B) consists of a single component,
and B satisfies axiom 4. By Theorem 2.20, J(B) is a Cantor set on the circle.

3) @ €T is a neutral point. Since the transformation B: T — T preserves
orientation, B'(a) = 1. The Leau flower of the point a can consist of one or
two petals. In the first case J(B) is a.Cantor set on the circle, and in the second
J(B)=T. s

4.3. Nonsmoothness. If the boundary D is an analytic curve (closed or
not), then the conformal mapping y: U — D is analytic in a neighborhood
of U. Fatou showed that y - actually extends to. a meromorphic function on
C. and, investigating the equation f oy = y o B in the class of meromorphic
functions, proved the following theorem. :

THEOREM 2.24 [82]. If the boundary of an invariant component of the Fatou
set is an analytic curve, then this curve is a circle or an arc of a circle. In the
first case the endomorphism f: C — C is conformally conjugate to the Blaschke
product, and in the second it is conformally conjugate to a Tt chebycheﬁ" polyno-
mial.

THEOREM 2.25 [82]. Let o bea repélling periodic point on the“bouna’ary of an
invariant simply connected component D of F(f). If f is not an exceptional
Sunction in Theorem 2.24, then 8D does not have a tangent at the point .

PRrOOF. It can be assumed that « is a fixed point. We linearize f in a
neighborhood of «, using Theorem 1.1. A piece of 9D passes into a continuum
invariant under the transformation’ z — A~ 'z, where |A] > 1. It is easy to see
that if such a continuum has a tangent at zero, then it is a closed line segment.
Consequently, 9D contains an analytic arc. Then the whole boundary 8D 'is
an analytic curve, and Theorem 2.24 is applicable. @ '

COROLLARY If the Julza set contains an zsolated arc of a smoozh curve, then
[ is one of the exceptional functions mentioned in Theorem 2.24.

The requirement that the arc be isolated is essential. For example, if the
polynomial f,: z — az(l — z), where a € (0, 4), does not have an attracting
cycle (and this very often happens (see [65])), then J(f)) > [0, 1].

The last corollary can be strengthened in the case when f satisfies axiom 4,
and J(f) is a Jordan curve different from a circle: at every point this curve
does not have a tangent, and, in particular, is not rectifiable (see [63]).




