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THEOREM 3.22. Let f satisfy axiom A. Then the normalized Hausdorff
measure l; is the unique conformal probability measure with exponent 6 =
dim J . The Gibbs measure u; corresponding to the function g5 = = In||Df|
is equivalent to the measure I .

THEOREM 3.23. Let f satisfy axiom A. Then the Gibbs measure ugs is the
unique invariant ergodic measure with dimension equal to 6 = dim J .

PROOFS OF THE ABOVE THEOREMS. We assume without proof the existence
of a unique root § of equation (3.5). Consider the Ruelle operator (3.1) cor-
responding to the function ¢; = —d1In||Df||:

(©)
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The spectral radius of A is equal to exp P(¢;) = 1. By Ruelle’s variant of
the Perron-Frobenius theorem, there exists a unique A*-invariant probability
measure m . But A”-invariance is equivalent to conformality. Thus, m is the
unique conformal probability measure.

We now consider a Markov generator {D,} on the Julia set (see 1.4). By the

Koebe distortion theorem, the sets Dio_,_i are ovals with uniformly bounded
n—1t

distortion, and

n —é .
mD, .. )=IDf"(x, ., )7’ =(diamD, , ¥,

where Xioi | is an arbitrary point in Dio_“ P This implies that there exist

constants C,, C, > 0 such that C,m(X) < [;(X) < C,m(X) for every measur-
able set. In particular, C, < /;(J) < C,, and hence ¢ = dim J, which proves
the Bowen formula.

Further, the measure /; is obviously conformal, and since the conformal
probability measure is unique, it follows that /;//,(J) = m. The equivalence
of the Hausdorff measure /; and the Gibbs measure u; follows from Theorem
3.8. The measure /5 is exact, because u; is. Since /;(J) > 0 while /,(J) =0
(Theorem 3.10), it follows that § < 2. The fact that § > 0 was established in
the preceding subsection.

It remains to prove that dimv < J for every ergodic measure v # u;. To
do this we apply the variational principle at the function ¢;:

Iy n—1

hV—(SxV:hy+/(p§du<P((p5)=O.

By Theorem 3.19, dimv =4, /x, <é. @

We remark that some of the results proved here can be extended to arbitrary
rational endomorphisms [138].

3.4. The fractal property of quasicircles. We consider a rational endomor-
phism satisfying axiom A with two components of the Fatou set. In this case
the Julia set J 1is a Jordan curve (Chapter 2, §4). The next result shows that, as
a rule, this cure is fractal, i.e., its Hausdorff dimension exceeds its topological
dimension (see [112]).

THEOREM 3.24 [138]. The following alternative holds under the assumptions
made above: a) J is a circle;b) 1 <dimJ < 2.
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PRroOF. If a) does not hold, then the curve J is not rectifiable (see Chapter
2, §4.3). Consequently, /,(J) = oco. On the other hand, /;(J) < oo by Theorem
3.21, where 6 =dim J . Consequently, i>1. e

Theorem 3.24 is an analogue of an earlier theorem of Bowen [62] relating to
limit sets of quasi-Fuchsian groups. In [123] an analogous result was obtained
for the class of Jordan curves in a neighborhood of which there is piecewise-
conformal dynamics; this class includes both Julia curves and limit sets of quasi-
Fuchsian groups.

3.5. Analytic dependence of dimension on parameters.

TaeoreM 3.25 (Ruelle [132]). Consider an A-domain W of the space R, of
rational endomorphisms of degree d . Then dim J(f) is a real-analytic function
on W.

The proof is based on Bowen’s formula. Ruelle showed that P(—JIn||Df]|)
depends analytically on (J, f), and the implicit function theorem can be ap-
plied to equation (3.5).

The first terms of the decomposition of the function d(¢) = dim J(z>+¢) in
a neighborhood of zero are given by (see [132]) d(e) =1+ !a|2/4ln2 + 0(|8|2) .

§4. The maximal entropy measure

4.1. Convergence of powers of the averaging operator. Consider the averaging
operator

(4p)(z E (¢ (3.6)
4 er

where the points in the inverse image f _lz are regarded with multiplicity
taken into account. In view of the continuous dependence of the inverse image
on the point this operator acts in the space C(C) of continuous functions.
Further, A4 is stochastic, i.e., A > 0 and A1 = 1, where 1 is the function
identically equal to 1. The operator 4 can be regarded as the Ruelle operator
(3.1) corresponding to the function ¢ = —Ind .

Let K, be the complement of the e-neighborhood of the exceptional points of
the endomorphism f (see Chapter 2, §1.3). Since the compact set K, is f

invariant for sufficiently small &, (3.6) unambiguously determines the factor of
A4 on C(K,), which we also denote by 4.

LemMma 3.2 ([81], [63]). Let | ,._" be branches of the inverse functions and
assume that they are single-valued in the neighborhood V. Then the family
{f:", ; is normal.

THEOREM 3.26 ([24], [102]). There exists a unique A*-invariant probabzlzty
measure p. Further, suppu = J(f), and in the space C(K,)

A"¢~+</¢d,u>l, n — oo.

The proof is based on the Perron-Frobenius theory for almost periodic oper-
ators (see 1.8). Lemma 3.2, which is a shadow of axiom A4, is basic for almost
periodicity of the averaging operator on C(K,). If J # C, then A is not
primitive on C(K,) (it is primitive on C(J)), but a weaker property suffices
for convergence of the powers: Vg € C(K,), ¢ > 0, ¢|J # 0 3N such that
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(4"9)(x) > 0 for n > N and x € K, . This property follows at once from
Theorem 2.4,

Up to the end of §4 the letter u will denote the measure constructed in
Theorem 3.26.

4.2. The distribution of the inverse images and the periodic points. We con-
sider the discrete probability measures

1
'un,zzﬁ Z 5{’ Vp = d”+1 Z

(ef "z =t

where 5( is the Dirac measure at the point (.

The following result was obtained for polynomials by Brolin [63], and for
rational endomorphisms in [24] and [102], then somewhat later by three authors
in [85].

THEOREM 3.27. For an arbitrary nonexceptional point z € C the convergence
M, ,— K, h— 0o, holds in the weak topology of the space of measures.

The proof follows at once from Theorem 3.26;

[odu, .= A0)D) = [pdn, n-co

THEOREM 3.28 ([24], [102]). The asymptotic distribution of the periodic points
with respect to the measure u is uniform. More precisely, v, — i, h— 00, In
the weak topology.

This result can be derived from Theorem 3.27 by approximating the inverse
images by periodic points,
4.3. Existence and uniqueness of the maximal entropy measure.

THEOREM 3.29 ([24], [102]; see also [113]). The measure u is the unique
maximal entropy measure.

ProoF. It is easy to verify that u is f-invariant. The A, -invariance of
this measure means that the conditional measures u(x|f *la) are equal to
1/d a.e. Consequently, Ju f = d ae. By the theorem on unstable man-
ifolds, f has a one-sided generator, and hence Theorem 3.1 is applicable:
h,(f)= fln(Juf)du =Ind.

Since any other f-invariant measure v is not 4 -invariant, it follows that

H (x| f7'e) <Ind on aset of positive v-measure. If A ,(f) > 0, then we again
use Theorem 3.1:
h(f) = H, (el f " /H xIf "'e)dv <Ind. e

CoroLLARY ([23], [88], [102]). The topological entropy of a rational endo-
morphism of degree d is equal to Ind .

4.4. The Bernoulli property. It was shown in [24], [102], and [85] that the
endomorphism [ is exact with respect to the maximal entropy measure. It
is very likely isomorphic to the one-sided Bernoulli shift with equally probable
outcomes. In [114] this conjecture was proved for some power f" . Moreover, it
is valid if f satisfies axiom 4. For polynomials this follows from the symbolic
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dynamics constructed by Jakobson and Guckenheimer:

THEOREM 3.30 ([48], [49], [90]). Let f be a polynomial satisfying axiom A.
Then there exists a continuous mapping m: Z; — J that semiconjugates ¢ and
f|J and is one-to-one modulo countable sets.

§5. Harmonic measure

5.1. The dimension of harmonic measure. Let D be a domain on the sphere
C. If the boundary 9D has positive capacity (see [7]), then the Dirichlet
problem is uniquely solvable in D, and hence there exists a unique measure
wp (-, a) on dD such that

h(a) = /h(z)de(z, a)

for each harmonic function 4: D — R that is continuous on D . This measure is
called harmonic measure. Variation of the point a leads to replacement of w,
by an equivalent measure, and thus we do not always indicate the dependence
of w, on a.

Harmonic measure exists on the boundary of an arbitrary simply connected
domain other than C and C. In this case it can be defined as the image of
Lebesgue measure on T under a conformal mapping ¢: U — D (the definition
is unambiguous, since ¢ has radial limits for a.e. z € T). This definition shows
the importance of harmonic measure for the theory of univalent functions. In
particular, computation of the Hausdorfl' dimension of harmonic measure is
directly connected with the study of the distortion under a conformal mapping.
Important results in this direction have been obtained recently by Makarov.

THEOREM 3.31 [34]. If D is a simply connected domain other than C and
C, then dimw,, = 1. The harmonic measure w, is absolutely continuous with
respect to the Hausdorff measure 1, if and only if the derivative of a conformal
mapping ¢: U — D has radial limits for a.e. z€T.

5.2. Harmonic measure on the boundary of an invariant domain. Harmonic
measure arises in the theory of iterates in connection with the following fact.

LEMMA 3.3. Let D be a domain whose boundary has positive capacity, and
f: D — D a continuous transformation that is analytic in D such that f(0D) C
0D . Assume that f has an attracting fixed point a in D. Then the harmonic
measure wp, = wp(-, a) is f-invariant.

PRrROOF. Let / be a harmonic function on D that is continuous on D . Then
Jhdw=h(a)=h(fa)= [ho fdw. Since h|dD can be an arbitrary continu-
ous function, the measure @ is f-invariant, @

ExaMPLE 3.3. The harmonic measure w(-, 0) coincides with Lebesgue
measure A on the circle T. Consider a Blaschke product for which 0 is a
fixed point. Then f preserves the measure A. Since f|T is an expanding en-
domorphism, A is its Gibbs measure corresponding to the function —In|f '(z)|
(see 1.9). By Theorem 3.11, the endomorphism f of the measure space (T, A)
is exact, and the entropy satisfies the formula 4,(f) = [In|f "|dA.

We mention some additional papers dealing with the dynamics of Blaschke
products: [118] and [133].

ExampLE 3.4, Let us apply Lemma 3.3 to a polynomial f on the domain
D = D(oco0) of attraction of oo. We get that the harmonic measure w =
(-, 00), which is concentrated on the Julia set J, is f-invariant. This situ-
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ation was investigated in 1965 by Brolin:

THEOREM 3.32 [63]. Let f be a polynomial. Then the inverse images f "z
of every point z € C with perhaps one exception have an asymptotically uniform
distribution with respect to the harmonic measure w on J(f).

Comparing Theorem 3.32 and the results in §4, we get the

CoOROLLARY. For a polynomial f the maximal entropy measure coincides
with the harmonic measure w on J(f).

5.3. Harmonic measure of fractal curves. Consider the family f: z — Zte.
As we know (§3.4), for small |¢| the Julia set J = J(f,) is a fractal curve.
Since the dimension of the harmonic measure w on J isequalto 1 (Theorem
3.3 1),(12) @ lies on a thin part of the curve J: w is automatically singular with
respect to the Hausdorff measure /.

It turns out that @ is actually singular even with respect to the measure
[, (cf. Theorem 3.31). This fact can be extended to many fractal self-similar
curves of different origin: the Koch curve (“snowflake”), the Dekking curves
[68], and limit sets of quasi-Fuchsian groups. Analogous assertions are valid
for fractal sets that are not curves. The dynamical approach using the theory of
Gibbs measures, Bowen’s formula (3.5), and Theorem 3.19 are crucial to this
circle of questions. The reader interested in more details about these problems
is referred to [64], [105], [106], [123], and [155].

5.4. Comparison of different measures. We have considered three natural mea-
sures: the conformal measure, the maximal entropy measure, and the harmonic
measure. Some connections between them were mentioned in 5.2-5.3 (see also
[103]). Anna Zdunik recently solved the problem of comparing the maximal en-
tropy measure u with the conformal measure. Let @« = dimyu and 6 = dim J .

THEOREM 3.33 [146]. Suppose that the rational endomorphism f is not crit-
ically finite with parabolic orbifold. Then:

a) a<d;

b) the maximal entropy measure p is mutually singular with the Hausdorff
measure [, and hence with the measure l5 (which coincides with the conformal
measure on the Julia set in the case of axiom A).

In particular, we consider a polynomial f with connected Julia set. Then
dimp =1 (Theorem 3.31 and the corollary to Theorem 3.33). Consequently,

if f is not conformally conjugate to ¥ ortoa Tchebycheff polynomial, then
dimJ > 1. This shows that the Julia set is fractal. We mention that the term
“fractal” was used universally with regard to the Julia set, but this becomes
justified only after Zdunik’s theorem.

In conclusion we direct the attention of the reader to the fact that the ratio-
nal functions with parabolic orbifolds (in particular, the polynomials z% and
the Tchebycheff polynomials) arise as remarkable exceptions in very diverse
problems of holomorphic dynamics.

CHAPTER 4
ITERATES OF ENTIRE FUNCTIONS

We have described in detail the dynamics of analytic endomorphisms of
hyperbolic Riemann surfaces and just one elliptic surface—the sphere C. Left
unstudied are the endomorphisms of the three parabolic Riemann surfaces: C,

(')See also [116] and [122].
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C*,and T?. In the case of the torus T an arbitrary analytic endomorphism f
is generated by an affine transformation of the plane C, z — az+b. If deg f =
1, then either f has finite order, or the dynamics bear a quasiperiodic character.
If degf > 1, then f belongs to the thoroughly studied class of expanding
endomorphisms (see Chapter 3). By passing to a covering endomorphism the
case C* can to a considerable degree be reduced to the case C (see [35], [150]),
which is the main object of this chapter., The analytic endomorphisms of the
plane C are the entire functions. The investigation of the iterates of entire
functions was begun by Fatou in 1926 [84], and then continued mainly by
Baker ([53]-[58]). Interest in this circle of problems, as well as in conformal
dynamics as a whole, has grown significantly in recent years ([59], [14]-[17],
[69]-[72], [86], [91]-[92], [108]).

Let us dwell briefly on the contents of this chapter. In §§1 and 2 we develop
the general theory (without special restrictions on the class of functions). Here
facts and methods specific to the transcendental case are emphasized. Two
theorems of Baker (4.1 and 4.3) are the central results of these sections. In
§3 we give some examples of entire functions with “pathological” properties
of their dynamics (in comparison to the rational case). §4 is devoted to an
important class S of entire functions that are free of the basic pathologies. For
the functions of this class the authors have given a complete description of the
dynamics of the Fatou set. In the concluding section we describe the dynamical
properties of exponential transformations.

§1. Periodic points

The Fatou set F(f) ¢ C and the Julia set J(f) c C for a transcendental
entire function are defined in exactly the same way as for a rational function.
Both sets are completely invariant and do not change when f is replaced by f” .
Fatou showed [84] that the Julia set J(f) of an entire function is perfect (the
proof is more complicated than in the rational case). The set J(f) is nowhere
dense or coincides with C. However, in contrast to the polynomial case, the
Julia set of a transcendental entire function is always unbounded. In general,
infinity has a very different influence on the dynamics in the transcendental case
than in the polynomial case.

The concept of an exceptional point @ € C (see Chapter 12, §1.3) for an
entire function is equivalent to the situation when f 'a=@ or f 'a= {a}.
An entire function can have at most one exceptional point. In this case f can
be reduced by an affine conjugacy to the form z — z"exp g(z), where n € N
and g is an entire function. However, the exceptional point is not necessarily
fixed, and can lie in the Julia set. For example, if f: z — e, then f"0 — oo
and 0 € J(f) = C (see §5). For the function f: z — 2ze® the exceptional
point 0 is a fixed repelling point.

The first serious difficulties in carrying the rational theory over to the tran-
scendental case arise in proving Theorem 2.3. A repetition of the argument
shows only that the points of the Julia set can be approximated by periodic
points, but this in no way implies that the latter are repelling (or even that they
lie in J(f)). This important fact was established by Baker, using the following
very deep result [47].

AHLFORS’ THREE DoMAINs THEOREM. Let E,, E,, and E, be bounded Jor-
dan domains with disjoint closures, and let r > 0. Then there exists a constant
C with the following property. For every function f holomorphic in the disk U,
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and such that |f'(0)|/(1 + |f(0)|2) > C there exists a domain D contained in
U, and with closure mapped univalently by f onto one of the domains E,.

THEOREM 4.1 (Baker [55]). The repelling cycles of an entire function are dense
in the Julia set.

ProoF. Let V' be an open set with V' N J # J. Since J is perfect, there
exist three distinct points z; € JNV . Take disjoint disks E, = B(z;,2r)C V.

The spherical derivatives of the iterates f” are unbounded in a neighborhood
of the points z; as n — oo. Therefore, there are points z;. € B(zj, r) and

numbers m; such that (|(fmf)'|/(1+|fmflz))(zj.) > C, where C is the constant
in the three domains theorem. According to this theorem, there exist domains
D f such that D ; C B(zj. , ), and each D ; is mapped univalently by f" onto

one of the disks E, . Then there exist m and k such that f " maps some
domain D C D, univalently onto E; . The inverse mapping E, — D has an
attracting fixed point, since D C E, . Consequently, /" has a repelling fixed
point in D C V, which is what was required. @

Let I(f) = (z: f"z — oo}. Using the Wiman-Valiron method (see [8],
Chapter IX), Eremenko (Banach Center Publ., Warsaw, 1989) proved the fol-
lowing result.

THEOREM 4.2. I(f) # @ and J(f) = 8I(f) for every nonlinear entire func-
tion f. J(/)NI(f)#D for transcendental functions f .

§2. The components of the Fatou set

2.1. Simple connectedness of unbounded and nonwandering components. As
we know, a polynomial f has a single unbounded component D{co0) of the set
F(f). If f is regarded as a transformation C — C, then this component is
multiply connected. On the other hand, all the bounded components of F(f)
are simply connected. If f is a transcendental entire function, then the situa-
tion is completely different. The set F(f) can have infinitely many unbounded
components, or it can have none at all. If the number n of unbounded com-
ponents is finite and nonzero, then n = 1. It is likely that in this case the
Fatou set coincides with the unique unbounded component. An unexpected
fact is the simple connectedness of the unbounded components. On the other
hand, the bounded components can be multiply connected. Such components
are necessarily wandering,.

The main difference between transcendental entire functions and rational
functions is that the former are not in general branched covers C — C. If D
is a component of the set F(f) and D, the component containing fD, then
the mapping f: D — D, is also not necessarily a branched cover. However,
the mapping f|D is a branched cover (by Lemma 1.1) in the case when the
component D is bounded. In particular, fD =D, .

Denote the index of a curve y C C with respect to a point @ and by ind, 7.

LEMMA 4.1. Let D be a multiply connected component of the Fatou set F(f),
and y a Jordan curve that is not contractible in D. Then:

a) f" — oo uniformly on compact subsets of D

b) ind,(f"y) > 0 for all sufficiently large n.

PROOF. a) Assume that some subsequence {f "¢} is uniformly bounded on
compact subsets of D. Then |f"%| < M on y, and hence |(f")'| < C inside
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y. But inside y there are points of J{f), and we obtain a contradiction with
Theorem 4.1. b) Assume that ind,(f"*y) = 0 for some subsequence {n,}.
Then f " does not have zeros inside y (the argument principle). By the min-
imum principle, f™ — oo inside y, contrary to Theorem 4.1.

It is really not hard to show that ind,(f ") -0, n—o 0. ©

LemMma 4.2, Suppose that f is bounded on some curve I" going to co. Then
all the components of F(f) are simply connected.

ProoOF. In the contrary case we consider a Jordan curve 7y that is not con-
tractible in D. It follows from Lemma 4.1 that f"y intersects I" for all
sufficiently large n. Let z, € f"ynT. Then fz, € f"“y - 00, N — 00,
which contradicts the boundedness of f on I'. @

We need a consequence of the well-known Harnack inequality ([7], Ap-
pendix).

LemMa 4.3. Let V' be an arbitrary domain, and K a compact subset of
V. If h is a positive harmonic function in V, then h(z|) < ch(z,) for every
z,, z, € K, where the constant c depends only on V and K .

THEOREM 4.3 (Baker [57]). Let f be a transcendental entire function. Then
every unbounded component D of F(f) is simply connected.

PrROOF. Suppose that D is multiply connected, and let y, be a Jordan curve
that is not contractible in D . It follows from Lemma 4.1 that for all sufficiently
large n the curves y, = f ”yo intersect D, and hence are contained in D,
Consequently, D is invariant.

Let V' be a bounded domain containing the curves y, and 7, , and let Vc
D. By Lemma 4.1, |f"z| > 1, z € V, for all sufficiently large n. Applying
Lemma 4.3 to the functions 4, (z) =1In|f"z| in the domain V, we get that for
all z,ey; (j=0,1) '

|f"zl|§|f"zo|c, n>ng, (4.1)
where ¢ does not depend on #.

On the other hand, since y, — oo, ind;y, > 0, and f is transcendental,
it follows that for all sufficiently large n there exists a point { € y, such
that |f¢| > [¢|°. Let { = f"z,, where z, € y,, and fz, = z, € ,. Then
IS "z, =1/ > |C|° = |f"2,|", contradicting the inequality (4.1). @

CoROLLARY 1. Ifthe set F(f) for a transcendental entire function has an un-
bounded component D, then all the components of F(f) are simply connected.

PrOOF. Let V' be a multiply connected, hence bounded, component of
F(f). It follows from Lemma 4.1 that f"V N D # & for all sufficiently large
n. Consequently, f"V = D, a contradiction.

COROLLARY 2. The Julia set of a transcendental entire function cannot be
totally disconnected.

THEOREM 4.4. The nonwandering components of the Fatou set of a transcen-
dental entire function are simply connected.

Proor. Let D be a nonwandering component of F(f). If D is unbounded,
then it is simply connected by Theorem 4.3. If D is bounded, then the iter-
ates f" are uniformly bounded in D, and D is simply connected by Lemma
41. e
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2.2. A classification of periodic components. Baker domains, Schroder do-
mains, Boettcher domains, Leau domains, and Siegel disks are defined for an
entire function just as for a rational function. According to Theorem 4.4, a
transcendental entire function, like a polynomial, cannot have Arnol'd-Herman
rings. However, there is a fundamentally new possibility for a transcendental
entire function.

A component D of the Fatou set of a transcendental entire function will be
called a Baker domain if f"z — oo in D.

ExAMPLE 4.1 (Fatou [84]). f:z~ z+1+e °. Obviously, the right half-
plane P = {z: Rez > 0} is f-invariant, and Re(f"z) — +oo for z € P.
Consequently, P is contained in a Boettcher domain. :

z

THEOREM 4.5. Every periodic component of the Fatou set of a transcendental
entire function is a Schréder domain, a Boeticher domain, a Leau domain, a
Siegel disk, or a Baker domain.

Let f bean entlre function. A point a € C issaid tobe a nonszngular point
(of the function f ) if it has a neighborhood V such that f: f~ v v
is an unbranched cover. The set of singular points is denoted by E For
nonlinear éentire functions, X . # . Further, X ; can be infinite, and can even
coincide with the whole plane C. Singular points are of the following types:

1) a is a critical value,

2) a is an asymptotic value, i.e., there exists a curve I' going to oo such that
fz —a as z — oo along I’ (an important kind of singular point of this type is
a logarithmic branch point, which has a simply connected neighborhood V' such
that for some component U of the set f ~'v the mapping f: U — V' \{a} is
a universal cover);

3) limit points of singular points of types 1) and 2).

See [37] and [93] for details about singular points of functions inverse to
entire functions.

THEOREM 4.6. A cycle of Schréder domains, Boettcher domains, or Leau do-
mains contains at least one singular point. The boundary of a Siegel disk and
of an arbitrary non-Siegel neutral cycle is contained in |Jw(c), where ¢ runs
through Zf.

A cycle of Baker domains does not necessarily contain singular points. This
was shown independently by Herman [92] and the authors ([14], [79]).

EXAMPLE 4.2 [92]. Suppose that f: z — Aze®, where A = ¢?™® and ©
satisfies the Siegel condition (1. 2) Then O is contained in a Siegel disk D.
Raising the transformation f: C* — C to the universal covering C, we get
an entire function g: z — InAd+ z +e”, for which exp™ 'D is a Baker domain
that is mapped univalently onto itself.

2.3. Completely invariant components. In this subsection we assume that f
is a transcendental entire function having a completely invariant component D
of the Fatou set. Obviously, D is unbounded. By Corollary 1 to Theorem 4.3,
all components of the Fatou set are simply connected.

THEOREM 4.7 ([56], [15]). All singular points of the function f—l liein D.
Further, the critical values and the logarithmic branch points lie in D .
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For a proof we need

THE Gross THEOREM ([37], XI). Let g(z) be an element of f T that is
regular in a neighborhood of a point a. Then for almost all ) e [~7, @] the

element g(z) can be continued analytically along the ray {a+te :0< < o0}

We can prove Theorem 4.7 only for critical values. Let ¢ be a critical point
not in D, and let a = fc. By the Gross theorem, a can be joined by a
polygonal curve y(¢), 0 <t <1, y(0) = a to a fixed point b € D in such a
way that two analytic branches g; of £ with lim,_,g(»()=c, i=1,2,
are defined in a neighborhood of y. Since D is completely invariant, the curves
I', = g;» end in D. We join their endpoints by a curve A lying in D, and we
set d = fA. Consider a bounded component V' of the complement of the curve
I"Z_IAI“l such that ¢ € V. Then W = fV is a bounded domain such that: 1)
OW c dUy; and 2) a € W. But J is contained in the simply connected
domain D; and hence ind, J = 0. Obviously, the situation is contradictory.

COROLLARY (Baker [56], [57]). a) Let V be a component of the Fatou set
F(f) different from D. Then f is univalent on V .

b) A transcendental entire function cannot have two completely invariant com-
ponents of the Fatou set.

BAKER CONJECTURE [57]. If a transcendental entire function has a completely
invariant component D, then F(f)=D.

The authors [15] proved this conjecture for the class S of entire functions
with finitely many singular points (card X r < 00). This result follows from
Theorem 4.7 and the description of the dynamics of the functions f € S (see
§4).

§3. Pathological examples

Wandering components of the Fatou set will be called wandering domains.
The first example of such a domain was constructed by Baker ([53], [54]). This
was at the same time of an example of a multiply connected component of
the Fatou set. Simply connected wandering domains were constructed indepen-
dently by Herman [91] and the authors ([14], [15], [79]).

ExXAMPLE 4.3 (Herman). We consider the function g: z+— z—1+¢ °. It
has the superattracting fixed points z, = 2zin. Denote by D, the domam of
immediate attraction of the point z, By Theorem 4.4, all the domams D, are
simply connected.

The function g commutes with the transformation T': z — z +27ni. Con-
sequently, F(g) is T-invariant, and 7D, = D, , . Consider now the function
fizr g(z)+2mi, f=Tog. Wehave that fD, = D, . We show that
J(f) = J(g). Let z be an arbitrary repelling periodic point of g, p its
order,and A its multiplier. Then

fz=T"g"2)=T"z=z+ Qui)pn=0(n), n-oo,

and (fP")(z) = (") (2)(g"")(z) = A". Therefore, for the spherical deriva-
tive we have that |(f*")|/(1+]/?"]*) = 00, n — co. Consequently, the family
{f™} is not normal in a neighborhood of z,i.e., z € J(f). By Theorem 4.1,
J(g) C J(f). The reverse inclusion can be proved similarly. Thus, the domains
D, are wandering components of the Fatou set F(f).
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In the example of Herman all the mappings [ D, — D, are branched,

and f "DO — oo. The method used by the authors ([14], [15], [79]) permits the
construction of examples that, though not elementary, are more subtle:

1. An entire function f having a wandering domain on which all the iter-
ates " are univalent. Such a domain gives rise to an infinite-dimensional
quasiconformal deformation of f (see Chapter 2, §2.7).

2. A wandering domain whose orbit has infinitely many limit points. The
authors do not know whether the orbit of such a domain is bounded.

3. An entire function having infinitely many periodic domains of all types
(Schroder, Boettcher, Leau, Siegel, Baker) and infinitely many orbits of wan-
dering domains of types 1 and 2.

4. An entire function for which J(f) # C, but measJ(f) > 0. Here

a) meas{ze€ J(f): f"z =00, n—o00} >0, and

b) meas{z € J(f): lim,_,_ |f"z| <oo} >0.

It is not known whether it is true that meas{z € J(f): lim,_,__|f"z| < oo} >
0.

McMullen recently discovered that property a) is possessed by all the trans-
formations z +— sin(az + b) [108].

5. An entire function having an infinite-dimensional family of measurable
invariant fields of lines on J(f). In this case the dynamics on the Julia set gives

" rise to an infinite-dimensional quasiconformal deformation of f (see Chapter

2, §8).
It is possible to construct an entire function having all the properties 1-5
simultaneously.

84. The functions of the class S

4.1, Simply connectedness of the components of the Fatou set. In the rest
of this section it will be assumed that f ‘is transcendental, and the set T 1 of

singular points of the function f =Y is contained in the disk U, . Denote by H

the exterior of this disk, and by G the complete inverse image f “'H. Let V
be some component of G.

LEMMA 4.4. The domain V is simply connected and bounded by a simple
analytic curve going to oo at both endpoints.

Since |f(z)] =r on the curve I'= 0V, Lemma 4.2 gives us

LeEMMA 4.5. Under the assumptions made at the beginning of the subsection,
all the components of the Fatou set F(f) are simply connected.

4.2. Logarithmic change of variable. We now describe a logarithmic change
of variable that is one of the basic tools for investigating entire functions in the
class under consideration in a neighborhood of oo. This device (in a different
circle of problems) goes back to Teichmiiller [143].

The function ¢ = In f maps ¥V conformally and univalently onto the half-
plane P = {z: Rez > Inr}. Let r be large enough so that |f(0)| < r. Then
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0 ¢ G, and the function exp is univalent on each component of the set U =
exp_1 G . We consider the commutative diagram

U—-——f—’P

expl lexp (4_2)
G — H
S
The function f maps each component W of the set U conformally and uni-
valently onto the half-plane P. We consider the mapping ®: P — W inverse
to f. Let z € W. The disk of radius Re f(z) —Inr about f (z) is contained
in P. It follows from the Koebe 1/4 theorem that the set W contains the disk

of radius 1®'(f(z))(Re f(z) —Inr). On the other hand, since exp is univalent
on W, W does not contain vertical segments of length 27z . Consequently,

I/ (2)] > Z%(Re f(z)=1nr). (4.3)
4.3. The absence of Baker domains ([14], [15]).

THEOREM 4.8. Suppose that f is transcendental, and the set X g of singular
points is bounded. If z € F(f), then the orbit {f"z} . cannot tend to oo.

PrOOF. Suppose that z € F(f) and z, = f "z — co0. Then there exists a
disk B of radius R about z in which the sequence {f"} tends uniformly
to oo. Consequently, all the B, = f "B from some point on are contained
in G (see the diagram in (4.2)). It can be assumed that B, C G for all n.

Let 4 be some component of the set exp”lB, and let 4, = f "A. Then
expAd, = B, . Consequently, 4, C U, and Re f" = oo uniformly in 4.
Suppose that { € 4, {, = f "t e A, ,and R, is the radius of the maximal disk
about {, that is inscribed in A4, . By the 1/4 theorem, R, > an|f’(Z,'n)|.
Since Re f(Cn) — 400, it follows from (4.3) that |f’(Cn)| — oo . Consequently,

R, — co. But then some domain 4, C U contains a vertical segment of length
27, a contradiction. @

COROLLARY. If'the entire function f is transcendental and its set of singular
points is bounded, then F(f) does not contain Baker domains.

4.4. A complete picture of the dynamics on the Fatou set. We say that an
entire function f belongs to the class S, if the function f ~! has ¢ singular
points a,, ..., a . In this case the points a , are also called basic points. The
union of all the classes S, is denoted by S (the letter § is used in honor of
Speiser, who apparently was the first to consider this class [37]). Obviously, the
polynomials are contained in S. Examples of transcendental entire functions
in S are e, sinz,and f; P({)expQ({)d{ where P and Q are polynomials.
The class S is closed under compositions. The functions in the class S play
an important role in-the general theory of meromorphic functions ([37], [143]),
and from the point of view of dynamics they are free of the basic pathologies
encountered with entire functions.

Entire functions f and g will be regarded as equivalent if there exist home-
omorphisms ¢ and ¥ of the plane C such that o g = fog. The family of
functions equivalent to g is denoted by M = M g If ge Sq ,then M C S p
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A complex-analytic manifold structure is introduced on M in such a way that

the mapping MxC—C, (f,2)~ f(2)

is analytic in both variables. The dimension of this manifold is equal to g+ 2.
As local coordinates we can take the basic points of a function f € M and the
values of this function at two points.

The following property of the manifold M is obvious: if f, and f, are
topologically conjugate and f, € M, then f, € M. After this remark the next
result can be proved just like Theorem 2.17 of Sullivan (even more simply,
because of Lemma 4.5).

THEOREM 4.9. The Fatou set of an entire function in the class S does not
have wandering components.

This theorem was proved by the authors ([14], [15]), independently by Baker
[54] (for a more restricted class of functions), and somewhat later by Goldberg
and Keen [87].

Theorems 4.5, 4.8, and 4.9 give us at once a complete description of the
dynamics on the Fatou set of an entire function in the class S :

THEOREM 4.10 ([14], [15]). Let f € S. Then every orbit on the Fatou set
is absorbed by one of the cycles of Schrider domains, Boeticher domains, Leau
domains, or Siegel disks.

CoRroLLARY. If the orbits of all the basic points of a function f € S are
absorbed by cycles or tend to oo, then J(f) =C.

ExAMPLE 4.4 [58]. f,:z — wze®. This is a function of class S, with

critical value a, = —we™! and with logarithmic branch point a, = 0, which is
a fixed point. For a suitable choice of the parameter w the orbit of the point
a; is absorbed by a cycle. Consequently, J(f, ) = C. Historically, this is the
first example of an entire function with this property.

ExAMPLE 4.5. J(exp) =C [119].

A function in the class S has only finitely many nonrepelling cycles. This
can be proved by the method of Fatou (see Chapter 2, §2.6) with account taken
of the following fact, which is not obvious for transcendental entire functions.

LeMMA 4.6 ([15], [17]). Let f € S, let a(w) be a periodic point of the
Sfunction wf as an analytic multivalued function of the parameter w, and let
AMw) be the multiplier of the point a(w). Then an arbitrary branch of the
Junction A is nonconstant.

This approach gives the estimate 2g for the number of nonrepelling cycles
of a function in the class S , - A better estimate can be obtained by the method
of Shishikura.

THEOREM 4.11. Let f € S, In the notation of 2.6 in Chapter 2,
. N,+ N, +N,+Ng<gq.
This estimate is apparently sharp in each family A -
4.5. The measure of the Julia set. We present an analogue of Theorem 3.12
for functions in the class .S. An entire function f is said to be a function of

finite order if
max | f(z)] < Cexpr’

jzi=r

for some p >0 and C > 0.
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THEOREM 4.12 ([14], [15]). Let f be an entire function of finite order, and
suppose that f = has at least one logarithmic branch point. Then there exists
an R >0 such that lim,__ |f"z| < R for a.e. z € C. If it is assumed in
addition that f € S and the orbits of all basic points in J(f) are absorbed by
cycles, then either J(f) =C or measJ(f)=0.

Let f: z v sin(az + b), a, b € C. McMullen [108] showed that the set
{z: f"z — oo} has positive measure. Of course, the parameters can be chosen
so that the basic points of f lie on F(f). Consequently, the existence of a
logarithmic branch point is essential for the validity of Theorem 4.12.

4,6, Structural stability of entire functions of class S. This theory is con-
structed according to the same scheme as for rational functions (see Chapter 2,
§6). However, the transcendental case requires a certain analytical preparation
whose main result we now formulate. A periodic point «a(f) of a transforma-
tion f will be regarded as a multivalued analytic function on M .

LEMMA 4.7 ([16], [17]). The function a(f) has only algebraic singularities.

We consider an analytic family 9 of entire functions of class S, i.e., a
complex submanifold of A .

THEOREM 4.13 ([16], [17]). A function in general position in the family 9 is
structurally stable. The conjugating homeomorphism can be chosen to be quasi-
conformal.

Just as in the rational case, there is a remarkable class among the J-stable
entire functions: the functions satisfying axiom A. In this case axiom A means
that the orbits of the basic points tend to attracting cycles. An analogue of the
Fatou conjecture is very likely for the family M (Chapter 2, §6.4).

5.1. Exponential transformations

5.1. The bifurcation diagram, It is not hard to show that every transcendental
function of class S| has the form be‘* + a. The investigation of iterates of
such functions has a long history, going back to Euler. The popularity of this
circle of problems increased sharply after the appearance of Misiurewicz’ paper
[119], in which he proved the property J(exp) = C, conjectured by Fatou [84].

Taking the quotient of the family be‘“ 4+ a by the action of the affine group
of conjugacies leads to the reduced family z — e°“, ¢ € C*. We consider the
family f: z — e +a, a e C, in order that the family not have singularities
in the parameter plane. If the functions f and f. are affinely conjugate, then

a' = a+ 2nin. The projection of the family f, on the reduced family has the

form ¢ = e®. An immediate ccirbsequence of Theorems 4.10, 4.11, 4.6, and
4.12 is :

THEOREM 4.14. One of the following possibilities holds for the transformation
forzme +a:

1) f, has a unique attracting cycle a = {ak}z;é . The Fatou set F(f,)
coincides with the domain of attraction of this cycle. The Lebesgue measure of
the Julia set J(f,) is equal to zero. The basic point a is contained in the domain
of immediate attraction of the cycle «, but its orbit is not absorbed by this cycle.

2) f, has a unique neutral rational cycle «. The remaining properties of f,
are the same as in case 1).
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3). f, has one cycle of Siegel disks. The boundaries of the Siegel disks are
contained in w(a). (13)

4) J(f,)=C.

This theorem was proved mdependently by Baker and Rlppon [59] (without
the measure of the set J(f)) and the authors ([14], [15]). McMullen [108]
showed that the Hausdorff dimension of the set J(f,) isequal to 2 for arbitrary
a . . N N . .
If f, has anattracting cycle, then one of the Schréder domains contains the
left half-plane {z: Rez < —N} forlarge N . Consequently, all the componénts
of F(f,) are unbounded. If the order of the attracting cycle is greater than 1,
then there are infinitely many of these components. But if f has an attracting
fixed point, then F(f)) consists of a single completely invariant component. It
can be shown that in th1s case J(f,) is a Cantor set of curves. Consequently, it
contains points that are 1nacce551ble from F(f). However, as shown in [70], a
conformal mapping U — F has radial limits everywhere on the boundary ou.

The set W, of points a for Wthh 1 has an attracting fixed point is the

domain bounded by the cycloid a = it — e, —0o' < t < co. This domain
contains the real semi-axis {a: a < —1} . On the cycloid itself (in particular,
at a = —1) the function has a neutral fixed point. The cases 2), 3), or 4) of

Theorem 4.13 are realized according to its multiplier. We have that f"a — oo
for a > —1, and hence J (f,) = € (in particular, we get the Misiurewicz
theorem for a =0).

By Theorem 4.13, the open dense subset R of the a-plane consists of struc-
turally stable transformations. It is clear that these transformations must be
of type 1) or 4) in Theorem 4.14. Can a function f, with J(f)) = C be
structurally stable? This question has not been answered, like the more gen-
eral question formulated at the end of §4. An interesting result connected with
this question was obtained by Devaney [69]: the transformation z+ e’ is not
structurally stable. . :

According to the general termmology, the components of R in which the
functions f, have an attracting cycle are called A4-domains. As shown in [15]
and [59], the A-domains are simply connected and unbounded. Is zt true that
the boundary of an A-domain is a simple curve? ‘

Just as in the case of the quadratic family (see Chapter 2, §7), the multiplier
A of an attracting cycle can be regarded as a function in an arbitrary 4-domain
W . For this function the authors established an analogue of T heorem 2 39: the
function A: W — U" is a universal cover.

The bifurcation diagrams for the exponential family and the quadratic family
have analogous structures. However, in the case of the exponential family it is
not clear whether there is at least one tree of A-domains besides the one that
grows from the domain W, .

CONJSECTURE. The exponentzal Sfamily contazns infinitely many trees of A-
domains.

5 2. The topologlcal and measurable dynamlcs of the transformatlon Z

. As we have already mentioned, the extended investigation of the dynamics
of the exponential began with the Misiurewicz theorem: J(exp) = C. It implies
that the exponential is a mixing transformation, and hence the typical orbit in

(”)It is curious that the Siegel disks of the exponential function are unbounded (Herman [92]).
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the Baire sense is dense in J . All cycles of the exponential are repelling and fill
the plane densely A more detailed study of the cycles of the exponentla;l was
undertaken in [72]. ;

We now proceed to a description of the measurable dynamics of the ex-
ponential transformation. At present this question has been investigated very
thoroughly. The effects discovered are in sharp contrast to the topological prop-
erties of the dynamics of the exponential described above, as well as to the
known ergodic properties of rational endomorphisms. We begin with an unex-
pected result obtained independently by one of the authors [28] and Mary Rees
[125]:

THEOREM 4.15. The limit set w(z) of almost every (with respect to Lebesgue
measure) orbit {f "z} coincides with the orbit {f"0}° of zero.

The following picture is concealed behind this formulation. Let z be a
typical point in the Lebesgue sense. Then at some moment its orbit comes close
to zero, after which it moves for some time (how much?) along the orbit of zero.
Then it goes away from that orbit and executes several jumps (how many? and
how?) in the right half-plane. It then executes a jump into the left half-plane,
from which it moves still closer to zero than originally by a single jump. After
this the cycle repeats, except with greater amplitude.

Answers have been obtained to all the questions posed in parentheses [30].
For example, if k is the time during which the orbit {f "z}:‘;O moves along
the trajectory of zero at the sth turn, then k, ~ 3.5s, and the average time
spent by the orbit in the right half-plane far from the trajectory of zero is equal
to 1.

Further results have been obtained by Lyubich [30]. The first of them solves
a problem posed by Sullivan [137]:

THEOREM 4.16. The transformation f: z — e’ is not ergodic with respect to
the Lebesgue measure. Each of its ergodic components has zero measure.

Thus, the exponential transformation has a continuum of ergodic compo-
nents. The analogous fact for the transformation z — sin(az + b) was recently
established by McMullen [108]. For contrast we mention that all the known ra-
tional endomorphisms for which J(f) = C are ergodic with respect to Lebesgue
measure (see Chapter 3, §2).

In Chapter 3 it was explained why it is important to look for invariant mea-
sures equivalent to Lebesgue measure.

THEOREM 4.17. The transformation f: z — e° does not have an absolutely
continuous invariant measure that is finite on compact sets.

There obviously exists an absolutely continuous invariant measure whose den-
sity has a nonintegrable singularity only at the points f"0, n e N.

Further, the maximal quasiconformal deformation of the exponential is
finite-dimensional (three-dimensional). Therefore, f does not have wander-
ing sets of positive measure on which all the iterates f” are injective [86] (cf.
Chapter 3, §2.3). As shown by the following result, the last condition is essential.

THEOREM 4.18. The transformation f: z — e° has a wandering set of positive
measure.
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