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Abstract

Every non-constant meromorphic function in the plane univalently
covers spherical discs of radii arbitrarily close to arctan

√
8 ≈ 70◦32′ .

If in addition all critical points of the function are multiple, then a
similar statement holds with π/2. These constants are best possible.
The proof is based on the consideration of negatively curved singular
surfaces associated with meromorphic functions.

1 Introduction

Let M be the class of all non-constant meromorphic functions f in the
complex plane C. In this paper we exhibit a universal property of functions
f in M by producing sharp lower bounds for the radii of discs in which
branches of the inverse f−1 exist. Since a meromorphic function is a mapping
into the Riemann sphere C̄, it is appropriate to measure the radii of discs in
the spherical metric on C̄ . This metric has length element 2|dw|/(1 + |w|2)
and is induced by the standard embedding of C̄ as the unit sphere Σ in R3 .
The spherical distance between two points in Σ is equal to the angle between
the directions to these points from the origin.

Let D be a region in C, and f :D → C̄ a non-constant meromorphic
function. For every z0 in D we define bf (z0) to be the spherical radius of
the largest open spherical disc for which there exists a holomorphic branch
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φz0 of the inverse f−1 with φz0(f(z0)) = z0 . If z0 is a critical point, then
bf (z0) := 0. We define the ‘spherical Bloch radius’ of f by

B(f) := sup{bf (z0) : z0 ∈ D},

and the spherical Bloch radius for the class M by

B := inf{B(f) : f ∈M}.

An upper bound for B can be obtained from the following example (cf.
[23, 20]). We consider a conformal map f0 of an equilateral Euclidean triangle
onto an equilateral spherical triangle with angles 2π/3. We always assume
that maps between triangles send vertices to vertices. By symmetry f0 has
an analytic continuation to a meromorphic function in C. The critical points
of f0 form a regular hexagonal lattice and its critical values correspond to
the four vertices of a regular tetrahedron inscribed in the sphere Σ.

If we place one of the vertices of the tetrahedron at the point correspond-
ing to ∞ ∈ C̄ and normalize the map by z2f0(z) → 1 as z → 0, then f0

becomes a Weierstrass ℘-function with a hexagonal lattice of periods. It
satisfies the differential equation

(℘′)2 = 4(℘− e1)(℘− e2)(℘− e3),

where the numbers ej correspond to the three remaining vertices of the
tetrahedron.

It is easy to see that B(f0) = b0 , where

b0 := arctan
√

8 = arccos(1/3) ≈ 1.231 ≈ 70◦32′

is the spherical circumscribed radius of a spherical equilateral triangle with
all angles equal to 2π/3. Hence B ≤ b0 .

Our main result is

Theorem 1.1 B = b0 .

The lower estimate B ≥ b0 in Theorem 1.1 is obtained by letting R tend
to infinity in the next theorem. We use the notation D(R) = {z ∈ C : |z| <
R} and D = D(1).
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Theorem 1.2 There exists a function C0 : (0, b0)→ (0,∞) with the follow-
ing property. If f is a meromorphic function in D(R) with B(f) ≤ b0 − ε,
then

|f ′(z)|
1 + |f(z)|2 ≤ C0(ε)

R

R2 − |z|2 . (1)

In other words, for every ε ∈ (0, b0) the family of all meromorphic func-
tions on D(R) with the property B(f) ≤ b0− ε is a normal invariant family
[18, 6.4], and each function of this family is a normal function.

The history of this problem begins in 1926 when Bloch [9] extracted the
following result from the work of Valiron [26]: Every non-constant entire
function has holomorphic branches of the inverse in arbitrarily large Eu-
clidean discs. Improving Valiron’s arguments he arrived at a stronger state-
ment: Every holomorphic function f in the unit disc has an inverse branch in
some Euclidean disc of radius δ|f ′(0)|, where δ > 0 is an absolute constant.
Landau defined Bloch’s constant B0 as the least upper bound of all numbers
δ for which this statement is true. Finding the exact values of B0 and related
constants leads to notoriously hard problems that are mostly unsolved. The
latest results for B0 can be found in [13] and [7]. The conjectured extremal
functions for these constants derive from an example given by Ahlfors and
Grunsky [6]. As the elliptic function f0 above, the Ahlfors–Grunsky function
shows a hexagonal symmetry in its branch point distribution. It seems that
our Theorem 1.1 is the first result where a function with hexagonal symmetry
is shown to be extremal for a Bloch-type problem.

The earliest estimate for B is due to Ahlfors [1], who used what became
later known as his Five Islands Theorem (Theorem A below) to prove the
lower bound B ≥ π/4. We will see that our Theorem 1.1 in turn implies the
Five Islands Theorem.

Later Ahlfors [2] introduced another method for treating this type of
problems, and obtained a lower bound for Bloch’s constant B0 . Applying
this method to meromorphic functions, Pommerenke [23] proved an estimate
of the form (1) for functions f in D(R) satisfying B(f) ≤ π/3 − ε. From
this one can derive B ≥ π/3 thus improving Ahlfors’s lower bound [20].
Related is a result by Greene and Wu [16] who showed that for a meromorphic
function f in the unit disc the estimate B(f) ≤ 18◦45′ implies |f ′(0)|/(1 +
|f(0)|2) ≤ 1. An earlier result of this type without numerical estimates is
due to Tsuji [25].

Similar problems have been considered for various subclasses of M. In
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[23] Pommerenke proved that for locally univalent meromorphic functions f
in D(R) the condition B(f) ≤ π/2 − ε implies an estimate of the form
(1). A different proof was given by Peschl [22]. Minda [19, 20] introduced
the classes Mm of all non-constant meromorphic functions in C with the
property that all critical points have multiplicity at least m. Thus M1 =
M, M1 ⊃ M2 ⊃ . . . ⊃ M∞, and M∞ is the class of locally univalent
meromorphic functions. Using the notation Bm = inf{B(f) : f ∈ Mm},
Minda’s result can be stated as

Bm ≥ 2 arctan

√
m

m+ 2
, m ∈ N ∪ {∞}. (2)

In [10] the authors considered some other subclasses. In particular the best
possible estimate B(f) ≥ π/2 was proved for meromorphic functions omit-
ting at least one value, and B(f) ≥ b0 was shown for a class of meromorphic
functions which includes all elliptic and rational functions.

Since B1 = B our Theorem 1.1 improves (2) for m = 1. Our method
also gives the precise value for all constants Bm , m ≥ 2.

Theorem 1.3 There exists a function C1: (0, π/2) → (0,∞) with the fol-
lowing property. If f is a meromorphic function in D(R) with only multiple
critical points and B(f) ≤ π/2− ε, then

|f ′(z)|
1 + |f(z)|2 ≤ C1(ε)

R

R2 − |z|2 . (3)

Thus B2 = B3 = . . . = B∞ = π/2.

The first statement of Theorem 1.3 immediately gives the lower bound
π/2 for B2, . . . ,B∞ . This bound is achieved as the exponential function
exp ∈ M∞ shows.

The Ahlfors Five Islands Theorem is

Theorem A Given five Jordan regions on the Riemann sphere with dis-
joint closures, every non-constant meromorphic function f : C → C̄ has a
holomorphic branch of the inverse in one of these regions.

Derivation of Theorem A from Theorem 1.1. We consider the following
five points on the Riemann sphere

e1 =∞, e2 = 0, e3 = 1, and e4,5 = exp(±2πi/3).
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These points serve as vertices of a triangulation of the sphere into six spherical
triangles, each having angles π/2, π/2, 2π/3. The spherical circumscribed
radius of each of these triangles is R0: = arctan 2 ≈ 63◦26′ . (See, for example
[12, p. 246]). This means that each point on the sphere is within distance R0

from one of the points ej . Let ψ: C̄→ C̄ be a diffeomorphism which sends
the given Jordan regions Dj , 1 ≤ j ≤ 5, into the spherical discs Bj of radius
ε0: = (b0 − R0)/2 > 3◦ centered at ej, 1 ≤ j ≤ 5. By the Uniformization
Theorem there exists a quasiconformal diffeomorphism φ: C → C and a
meromorphic function g: C→ C̄ such that

ψ ◦ f = g ◦ φ. (4)

By Theorem 1.1 an inverse branch of g exists in some spherical disc B of
radius b0 − ε0 . Every such disc B contains at least one of the discs Bj . So
g and thus ψ ◦ f have inverse branches in one of the discs Bj . We conclude
that f has an inverse branch in one of the regions Dj ⊂ ψ−1(Bj). 2

The use of the diffeomorphism ψ in the above proof was suggested by
recent work of Bergweiler [8] who gives a simple proof of the Five Islands
Theorem using a normality argument.

Our Theorem 1.2 implies a stronger version of the Five Islands Theorem
proved by Dufresnoy [14, 18].

Theorem B Let D1, . . . , D5 be five Jordan regions on the Riemann sphere
whose closures are disjoint. Then there exists a positive constant C2 , de-
pending on these regions, with the following property. Every meromorphic
function f in D without inverse branches in any of the regions Dj satisfies

|f ′(0)|
1 + |f(0)|2 ≤ C2.

In fact one can take C2 = (32Lmax{C0(ε0), 1})K , where L ≥ 1 is the
Lipschitz constant of ψ−1 in (4), K is the maximal quasiconformal dilatation
of ψ , ε0 is as above and C0 is the function from Theorem 1.2. So C0(ε0) is
an absolute constant, while L and K depend on the choice of the regions
Dj in Theorem B. This value for C2 can be obtained by an application of
Mori’s Theorem similarly as below in our reduction of Theorems 1.2 and 1.3
to Theorem 1.4.

Before we begin discussing the proofs of Theorems 1.2 and 1.3, let us
introduce some notation and fix our terminology. It is convenient to use the
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language of singular surfaces though our surfaces are of very simple kind,
called K -polyhedra in [24, Ch. I, 5.7]. For r ∈ (0, 1], α > 0 and χ ∈
{0, 1,−1} a cone C(α, χ, r), is the disc D(r), equipped with the metric
given by the length element

2α|z|α−1|dz|
1 + χ|z|2α .

This metric has constant Gaussian curvature χ in D(r)\{0}.
To visualize a cone we choose a sequence 0 = α0 < α1 < . . . < αn = 2πα

with αj − αj−1 < 2π , and r ∈ (0, 1], and consider the closed sectors

Dj = {w ∈ D(rα) : αj−1 ≤ argw ≤ αj}, 1 ≤ j ≤ n,

equipped with the Riemannian metric of constant curvature χ, whose length
element is 2|dw|/(1 + χ|w|2). For 1 ≤ j ≤ n − 1 we paste Dj to Dj+1

along their common side {w ∈ D(rα) : argw = αj}, and then identify
the remaining side {w ∈ D(rα) : argw = αn} of Dn with the side {w ∈
D(rα) : argw = α0} of D1 , all identifications respecting arclength. Thus
we obtain a singular surface S which is isometric to the cone C(α, χ, r) via
z = φ(w) = w1/α .

We consider a two-dimensional connected oriented triangulable manifold
(a surface) equipped with an intrinsic metric, which means that the distance
between every two points is equal to the infimum of lengths of curves con-
necting these points. By a singular surface we mean in this paper a surface
with an intrinsic metric which satisfies the following condition. For every
point p there exists a neighborhood V and an isometry φ of V onto a cone
C(α, χ, r). The numbers r and α in the definition of a cone may vary from
one point to another. It follows from this definition that near every point,
except some isolated set of singularities we have a smooth Riemannian met-
ric of constant curvature χ ∈ {0, 1,−1}. The curvature at a singular point
p is defined to be +∞ if 0 < α < 1 and −∞ if α > 1. The total angle at p
is 2πα , and p contributes 2π(1− α) to the integral curvature.

Underlying the metric structure of a singular surface is a canonical Rie-
mann surface structure. It is obtained by using the local coordinates φ from
the definition of a singular surface as conformal coordinates. When we speak
of a ‘conformal map’ or ‘uniformization’ of singular surfaces, we mean this
conformal structure. So our ‘conformal maps’ do not necessarily preserve
angles at singularities.
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In what follows every hyperbolic region in the plane is assumed to carry
its unique smooth complete Riemannian metric of constant curvature −1,
unless we equip it explicitly with some other metric. For example D(R) is
always assumed to have the metric with length element

2R|dz|
R2 − |z|2 .

If φ:D(R)→ Y is a conformal map of singular surfaces, and the curvature
on Y is at most −1 everywhere, then φ is distance decreasing. This follows
from Ahlfors’s extension of Schwarz’s Lemma [5, Theorem 1-7].

If f :X → Y is a smooth map between singular surfaces, we will denote
by ‖f ′‖ the norm of the derivative with respect to the metrics on X and Y .
So (1), for example, can simply be written as ‖f ′‖ ≤ C0(ε). We reserve the
notation |f ′| for the case when the Euclidean metric is considered in both
X and Y .

In this paper ‘triangle’ always means a triangle whose angles are strictly
between 0 and π , and ‘spherical triangle’ refers to a triangle isometric to
one on the unit sphere Σ in R3 .

Let D be a region in C̄, and f :D → C̄ a non-constant meromorphic
function. We consider another copy of D and convert it into a new singular
surface Sf by providing it with the pullback of the spherical metric via
f . Then the metric on Sf has the length element 2|f ′(z)dz|/(1 + |f(z)|2).
The identity map id:D → D now becomes a conformal homeomorphism
f1:D→ Sf . Thus f factors as

f = f2 ◦ f1, D
f1−→ Sf

f2−→ C̄, (5)

where f2 is a path isometry, that is, f2 preserves the arclength of every
rectifiable path, and f1 is a homeomorphism. In the classical literature, the
singular surface Sf is called ‘the Riemann surface of f−1 spread over the
sphere’ (Überlagerungsfläche).

The following idea was first used by Ahlfors in his paper [2] to obtain
a lower bound for the classical Bloch constant B0 . In the papers of Pom-
merenke [23] and Minda [19, 20] essentially the same method was applied to
the case of the spherical metric. Assuming that the Bloch radius of a func-
tion f :D(R)→ C̄ is small enough one constructs a conformal metric on Sf
whose curvature is bounded from above by a negative constant. If we denote
the surface Sf equipped with this new metric by S′ , then the identity map
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id:Sf → Sf can be considered as a conformal map ψ:Sf → S ′ . If in addition
one knows a lower bound for the norm of the derivative of ψ , an application
of the Ahlfors–Schwarz Lemma to ψ ◦ f1 (where f1 is as in (5)) leads to an
estimate of the form (1). For a proof of Theorem 1.2 it seems hard to find
an explicit conformal map ψ which will work in the case when B(f) is close
to b0 .

Our main innovation is replacing the conformal map ψ by a quasiconfor-
mal map such that ψ−1 ∈ Lip(L), for some L > 1, which means that ψ−1

satisfies a Lipschitz condition with constant L (see Theorem 1.4 below).
Let us describe the scheme of our proof.
We recall that f :D → C̄ is said to have an asymptotic value a ∈ C̄ if

there exists a curve γ: [0, 1)→ D such that γ(t) leaves every compact subset
of D as t→ 1 and a = limt→1 f(γ(t)). The potential presence of asymptotic
values causes difficulties, so our first step is a reduction of Theorems 1.2
and 1.3 to their special cases for functions without asymptotic values. This
reduction is based on a simple approximation argument (Lemmas 2.1 and
2.2). If f has no asymptotic values, the singular surface Sf is complete,
that is, every curve of finite length in Sf has a limit in Sf .

As a second step we introduce a locally finite covering1 T of Sf by closed
spherical triangles such that the intersection of any two triangles of T is
either empty or a common side or a set of common vertices. In addition
the set of vertices of these triangles coincides with the critical set of f , and
the circumscribed radii of all triangles do not exceed the Bloch radius B(f).
The existence of such covering was proved in [10] under the conditions that
f has no asymptotic values, and B(f) < π/2. For the precise formulation
see Lemma 2.3 in Section 2. Our singular surface Sf has spherical geometry
everywhere, except at the vertices of the triangles where it has singularities.
Since each vertex of a triangle in T is a critical point of f2 in (5), the total
angle at a vertex p is 2πm where m is the local degree of f2 at p, m ≥ 2.
In particular, the total angle at each vertex of a triangle in T is at least 4π ,
and at least 6π if all critical points of f are multiple. Now our results will
follow from

Theorem 1.4 Let S be an open simply-connected complete singular surface
with a locally finite covering by closed spherical triangles such that the in-
tersection of any two triangles is either empty, a common side, or a set of

1This covering need not be a triangulation, since two distinct triangles might have more
than one common vertex without sharing a common side.
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common vertices. Assume that for some ε > 0 one of the following conditions
holds:

(i) The circumscribed radius of each triangle is at most b0−ε and the total
angle at each vertex is at least 4π , or

(ii) The circumscribed radius of each triangle is at most π/2 − ε and the
total angle at each vertex is at least 6π .

Then there exists a K -quasiconformal map ψ:S → D such that ψ−1 ∈
Lip(L), with L and K depending only on ε.

Case (i) will give Theorem 1.2 and case (ii) Theorem 1.3.
The idea behind Theorem 1.4 is that if the triangles are small enough,

then the negative curvature concentrated at vertices dominates the positive
curvature spread over the triangles. Thus on a large scale our surface looks
like one whose curvature is bounded from above by a negative constant.

For the proof in the case (i) we first construct a new singular surface S̃ in
the following way. We choose an appropriate increasing subadditive function
F : [0, π)→ [0,∞) with F (0) = 0 and

F ′(0) <∞, (6)

and replace each spherical triangle ∆ ∈ T with sides a, b, c by a Euclidean
triangle ∆̃ whose sides are F (a), F (b), F (c). The monotonicity and sub-
additivity of F imply that this is possible for each triangle ∆, that is,
F (a), F (b), F (c) satisfy the triangle inequality. Then these new triangles
∆̃ are pasted together according to the same combinatorial pattern as the
triangles ∆ in T , with identification of sides respecting arclength. Thus we
obtain a new singular surface S̃ , and (6) permits us to define a bilipschitz
homeomorphism ψ1:S → S̃ .

The main point is to choose F so that each angle of every triangle ∆̃ is at
least 1/2 + δ times the corresponding angle of ∆, where δ > 0 is a constant
depending only on ε (cf. Theorem 1.5). Thus the new singular surface S̃ has
Euclidean geometry everywhere, except at the vertices of the triangles, where
the total angle is at least 2π+ 4πδ . As the diameters of the triangles ∆̃ are
bounded, it is relatively easy (using the Ahlfors method described above)
to show that S̃ is conformally equivalent to D, and that the uniformizing
conformal map ψ2: S̃ → D has an inverse in Lip(L) with L depending only
on δ . Then Theorem 1.4 with (i) follows with ψ = ψ2 ◦ ψ1 .
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The major difficulty is to verify that some function F has all the neces-
sary properties. To formulate our main technical result we use the following
notation. Let ∆ be a spherical or Euclidean triangle whose sides have lengths
a, b, c, and F a subadditive increasing function with F (0) = 0 and F (t) > 0
for t > 0. We define the transformed triangle ∆̃: = F∆ as a Euclidean tri-
angle with sides F (a), F (b), F (c). Let α, β, γ be the angles of ∆, and α̃, β̃, γ̃
the corresponding angles of ∆̃. We define the angle distortion of ∆ under
F by

D(F,∆) = min{α̃/α, β̃/β, γ̃/γ}. (7)

For case (i) in Theorem 1.4 we take k > 0 and put2

Fk(t) = min{k chd t,
√

chd t}, where chd t: = 2 sin(t/2), t ∈ [0, π]. (8)

Theorem 1.5 For every ε ∈ (0, b0) there exist k ≥ 1 and δ > 0 such that
for every spherical triangle ∆ of circumscribed radius at most b0−ε the angle
distortion by Fk satisfies

D(Fk,∆) ≥ 1

2
+ δ.

For Theorem 1.3 and Theorem 1.4 with condition (ii) we need a simpler result
with

F ∗k (t) = min{k chd t, 1}, t ∈ [0, π]. (9)

Theorem 1.6 For every ε ∈ (0, π/2) there exist k ≥ 1 and δ > 0 such that
for every spherical triangle ∆ of circumscribed radius at most π/2 − ε the
angle distortion by F ∗k satisfies

D(F ∗k ,∆) ≥ 1

3
+ δ.

The constant 1/2 in Theorem 1.5 is best possible, no matter which dis-
tortion function F is applied to the sides. Indeed, a spherical equilateral
triangle of circumscribed radius close to b0 has sum of angles close to 2π ,
and the corresponding Euclidean triangle has sum of angles π . A similar re-
mark applies to the constant 1/3 in Theorem 1.6. Further comments about
Theorems 1.5 and 1.6 are in the beginning of Section 3.

2We find the notation chd (abbreviation of ‘chord’) convenient. According to van der
Waerden [27] the ancient Greeks used the chord as their only trigonometric function. Only
in the fifth century were the sine and other modern trigonometric functions introduced.
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Remarks

1. Our proofs of Theorems 1.5 and 1.6 are similar but separate. It
seems natural to conjecture that one can ‘interpolate’ somehow between these
results. This would yield Theorem 1.4 under the following condition

(iii) The total angle at each vertex is at least 2πq with q > 1 and the supre-
mum of the circumscribed radii is at most

arctan

√
− cos(πq/2)

cos3(πq/6)
− ε.

If ε = 0 this expression is the circumscribed radius of an equilateral triangle
with angles πq/3. In Theorem 1.4 case (i) corresponds to q = 2 and (ii) to
q = 3. The limiting case q → 1 is also understood, namely we have the

Proposition Every open simply-connected singular surface triangulated into
Euclidean triangles of bounded circumscribed radius, and having total angle
at least 2πq at each vertex, where q > 1, is conformally equivalent to the
unit disc.

We will prove this in Section 2 as a part of our derivation of Theorem 1.4.

2. Ahlfors’s original proof of Theorem A [3, 18] was based on a linear
isoperimetric inequality. Assuming that f has no inverse branches in any of
the five given regions Dj he deduced that the surface Sf has the property
that each Jordan region in Sf of area A and boundary length L satisfies
A ≤ hL, where h is a positive constant depending only on the regions
Dj . On the other hand, Ahlfors showed that a surface with such a linear
isoperimetric inequality cannot be conformally equivalent to the plane, and
used this contradiction to prove Theorem A. The stronger Theorem B can
be derived by improving the above isoperimetric inequality to

A ≤ min{h1L
2, hL},

where the constants h1 and h still depend only on the regions Dj . This
argument belongs to Dufresnoy [14], see also [18, Ch. 6]. It seems that a linear
isoperimetric inequality holds under any of the conditions of Theorem 1.4 or
of the above Proposition. This would imply that the surface is hyperbolic in
the sense of Gromov [17].
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3. It can be shown [10, Lemma 7.2] that condition (i) in Theorem 1.4
implies that the areas of the triangles are bounded away from π . Similarly
(ii) implies that these areas are bounded away from 2π . One can be tempted
to replace our assumptions on the circumscribed radii in Theorem 1.4 by
weaker (and simpler) assumptions on the areas of the triangles. We believe
that there are counterexamples to such stronger versions of Theorem 1.4.

4. Theorem 1.2 can be obtained from Theorem 1.1 by a general rescal-
ing argument as in [10]. (A similar argument derives Bloch’s theorem from
Valiron’s theorem and Theorem B from Theorem A. See [28] for a general
discussion of such rescaling.) But we could not simplify our proof by proving
the weaker Theorem 1.1 first. The problem is in the crucial approximation
argument in Section 2 which deals with asymptotic values.

5. The functions C0 in Theorem 1.2 and C1 in Theorem 1.3 can easily
be expressed in terms of k = k(ε) and δ = δ(ε) from Theorems 1.5 and 1.6.
The authors believe that the arguments of this paper can be extended to give
explicit estimates for k and δ , but this would make the proofs substantially
longer. So we use ‘proof by contradiction’ to simplify our exposition.

The plan of the paper is following. In Section 2 we reduce all our results
to Theorems 1.5 and 1.6. Section 3 begins with a discussion and outline of
the proof of Theorem 1.5. The proof itself occupies the rest of Section 3 as
well as Sections 4, 5 and 6. In Section 7 we prove Theorem 1.6, using some
lemmas from Sections 4 and 5. The main results of this paper have been
announced in [11].

The authors thank D. Drasin, A. Gabrielov and A. Weitsman for helpful
discussions, and the referee for carefully reading the paper. A. Gabrielov
suggested the use of convexity to simplify the original proof of Lemma 5.1.
This paper was written while the first author was visiting Purdue University.
He thanks the faculty and staff for their hospitality.

2 Derivation of Theorems 1.2, 1.3 and 1.4

from Theorems 1.5 and 1.6.

We begin with the argument which permits us to reduce our considerations
to functions without asymptotic values.
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Lemma 2.1 Let R > 1, ε > 0, and a meromorphic function f :D(R)→ C̄
be given. Then there exists a conformal map φ of D into D(R) with φ(0) = 0
and |φ′(0) − 1| < ε such that f ◦ φ is the restriction of a rational function
to D.

If all critical points of f in D̄ are multiple, then φ can be chosen so that
all critical points of f ◦ φ in D are multiple.

Proof. We may assume that f is non-constant. Then we can choose an
annulus A = {z : r1 < |z| < r2} with 1 < r1 < r2 < R such that f has no
poles and no critical points in Ā . Put m = min{|f ′(z)|: z ∈ Ā} > 0, and
let δ ∈ (0,m/6). Taking a partial sum of the Laurent series of f in A, we
obtain a rational function g such that

|g(z)− f(z)| < (r2 − r1)δ and |g′(z)− f ′(z)| < δ for z ∈ Ā. (10)

Let λ be a smooth function defined on a neighborhood of [r1, r2] such that
0 ≤ λ ≤ 1, λ(r) = 0 for r ≤ r1 , λ(r) = 1 for r ≥ r2 , and |λ′| ≤ 2/(r2 − r1).
We put u(z) = λ(|z|)(g(z)− f(z)) for z in a neighborhood of Ā. Then (10)
implies |u′(z)| ≤ 3δ ≤ m/2 for z ∈ Ā. The function

h(z) =

 f(z), |z| < r1,
f(z) + u(z), r1 ≤ |z| ≤ r2,
g(z), |z| > r2,

is meromorphic in C̄\Ā . In a neighborhood of Ā it is smooth, and for its
Beltrami coefficient µh = hz̄/hz we obtain |µh| ≤ 6δ/m < 1. Thus h: C̄→ C̄
is a quasiregular map. Hence there exists a quasiconformal homeomorphism
φ: C̄ → C̄ fixing 0, 1 and ∞ with µφ−1 = µh . Then h ◦ φ is a rational
function. Moreover, when δ is small, then φ is close to the identity on C̄ .
Hence for sufficiently small δ > 0 the homeomorphism φ is conformal in D,
and we have |φ′(0) − 1| ≤ ε and φ(D) ⊆ D(r1). Moreover, if f has only
multiple critical points in D̄, then we may in addition assume that φ maps
D into a disc in which f has only multiple critical points. Thus f ◦ φ has
only multiple critical points in D. 2

Lemma 2.2 Given ε > 0 and a meromorphic function f : D → C̄ there
exists a meromorphic function g: D → C̄ without asymptotic values such
that

B(g) ≤ B(f) + ε (11)
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and
‖g′(0)‖ ≥ (1− ε)‖f ′(0)‖. (12)

If all critical points of f are multiple, then g can be chosen so that all its
critical points are also multiple.

Proof. First we approximate f by a restriction of a rational function to
D. Assuming 0 < ε < 1/2 we set r = 1 − ε/2 and apply the previous
Lemma 2.1 to the function fr(z): = f(rz), z ∈ D, which is meromorphic in
D(1/r). We obtain a conformal map φ on D with the properties φ(0) = 0,
φ(D) ⊂ D(1/r), and

|φ′(0)| ≥ 1− ε/2
such that p: = fr ◦φ: D→ C̄ is the restriction of a rational function h: C̄→
C̄. (The reason why we have to distinguish between p and h is that in
general B(p) 6= B(h).) We have

B(p) ≤ B(f) (13)

and
‖h′(0)‖ = ‖p′(0)‖ ≥ (1− ε)‖f ′(0)‖. (14)

If all critical points of f in D are multiple, then fr has only multiple
critical points in D̄ . Then Lemma 2.1 ensures that φ can be chosen in such
a way that p has only multiple critical points in D.

Now we will replace p by a function g: D→ C̄ which has no asymptotic
values.

We consider the singular surface Sh obtained by providing C̄ with the
pullback of the spherical metric via h. Then h factors as in (5), namely h =
h2 ◦ h1 , where h1: C̄ → Sh is the natural homeomorphism and h2:Sh → C̄
is a path isometry.

The compact set K := Sh\h1(D) has a finite ε/2-net E ⊂ K , that is,
every point of K is within distance of ε/2 from E . We may assume without
loss of generality that E contains at least 4 points. We put

H := h−1
1 (E) ∪ (crit(h) ∩ (C̄\D)) ⊂ C̄\D, (15)

where crit(h) stands for the set of critical points of h. Let ψ: D→ C̄, ψ(0) =
0, be a holomorphic ramified covering of local degree 3 over each point of
H and local degree 1 (unramified) over every point of C̄\H . Such ramified
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covering exists by the Uniformization Theorem for two-dimensional orbifolds
[15, Ch. IX, Theorem 11]. Then ψ has no asymptotic values, and

‖ψ′(0)‖ ≥ 1 (16)

by Schwarz’s Lemma, because ψ is unramified over D.
Now we set

g := h2 ◦ h1 ◦ ψ = h ◦ ψ. (17)

First we verify the statement about asymptotic values. Neither h nor ψ have
them, so the composition g does not.

The inequality (12) follows from (14), (16) and (17).
Now we verify

B(g) ≤ B(p) + ε. (18)

To prove (18) we assume that B ⊂ C̄ is a spherical disc of radius R > ε,
where a branch of g−1 is defined. By (17) there is a simply-connected region
D ⊂ C̄ such that h:D → B is a homeomorphism, and a branch of ψ−1

exists in D . It follows that D ∩H = ∅ so, by definition (15) of H

h1(D) ∩ E = ∅. (19)

We consider the spherical disc B1 ⊂ B of spherical radius R−ε and the same
center as B . Let D1 be the component of h−1(B1) such that D1 ⊂ D . Since
B is the open ε-neighborhood of B1 , and h2:h1(D) → B is an isometry, it
follows that h1(D) is the open ε-neighborhood of h1(D1). This, (19) and
the definition of E implies that D1 ⊂ D.

Since D1 ⊂ D, and p is the restriction of h on D, p maps D1 onto B1

homeomorphically, and so (18) follows. Together with (13) this gives (11).
It remains to check that all critical points of g are multiple if all critical

points of f are. Using (17) we see that if z0 is a critical point of g , then
either z0 is a critical point of ψ or ψ(z0) is a critical point of h. In the first
case z0 is multiple, since all critical points of ψ are multiple according to the
definition of ψ . In the second case, when z0 is not a critical point of ψ and
ψ(z0) is a critical point of h, we must have ψ(z0) ∈ D, since ψ is ramified
over all critical points of h outside D by (15). But in D the maps p and
h are the same, and p has only multiple critical points. Hence ψ(z0) is a
multiple critical point of h which implies that z0 is a multiple critical point
of g . 2
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Lemma 2.3 [10, Proposition 8.4] Let D be a Riemann surface, and f :D→
C̄ a non-constant holomorphic map without asymptotic values such that
B(f) < π/2.

Then there exists a set T of compact topological triangles in D with the
following properties

(a) For all ∆ ∈ T , the edges of ∆ are analytic arcs, f |∆ is injective and
conformal on ∆̊. The set f(∆) is a spherical triangle contained in a
closed spherical disc of radius B(f).

(b) If the intersection of two distinct triangles ∆1,∆2 ∈ T is nonempty,
then ∆1 ∩ ∆2 is a common edge of ∆1 and ∆2 or a set of common
vertices.

(c) The set consisting of all the vertices of the triangles ∆ ∈ T is equal to
the set of critical points of f .

(d) T is locally finite, i.e., for every z ∈ D there exists a neighborhood W
of z such that W ∩∆ 6= ∅ for only finitely many ∆ ∈ T .

(e)
⋃

∆∈T ∆ = D .

A complete proof of this Lemma 2.3 is contained in [10, Section 8]. Here
we just sketch the construction for the reader’s convenience. Take a point
z ∈ D such that f ′(z) 6= 0 and put w = f(z). Then there exists a germ
φz of f−1 such that φz(w) = z . Let B ⊂ C̄ be the largest open spherical
disc centered at w to which φz can be analytically continued. As there are
no asymptotic values, the only obstacle to analytic continuation comes from
the critical points of f . So there is at least one but at most finitely many
singularities of φz on the boundary ∂B . Let C(z) be the spherical convex
hull of these singularities. This is a spherically convex polygon contained in
B̄ . This polygon is non-degenerate (has non-empty interior) if and only if
the number of singular points on ∂B is at least three. Let D(z) = φz(C(z)).
We consider the set Q of all points z in D , for which the polygon C(z) is
non-degenerate. It can be shown that the union of the sets D(z) over all
z ∈ Q is a locally finite covering of D , and D(z1) ∩D(z2) for two different
points z1 and z2 in Q is either empty or a common side or a set of common
vertices. The vertices are exactly the critical points of f . Finally, if we
partition each C(z), z ∈ Q, into spherical triangles by drawing appropriate
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diagonals, then the images of these triangles under the maps φz, z ∈ Q, give
the set T . 2

Reduction of Theorems 1.2 and 1.3 to Theorem 1.4. We assume that
R = 1 in Theorems 1.2 and 1.3. This does not restrict generality because we
can replace f(z) by f(z/R). Moreover, the hypotheses on the function f in
both theorems and the estimates (1) and (3) possess an obvious invariance
with respect to pre-composition of f with an automorphism of the unit disc.
So it is enough to prove (1) and (3) for z = 0.

By Lemma 2.2 it will suffice to consider only the case when f has no
asymptotic values. If B(f) ≥ π/2 there is nothing to prove, so we assume
that B(f) < π/2. Now we apply Lemma 2.3 to f : D → C̄. As it was
explained in the Introduction, we equip D with the pullback of the spherical
metric via f , which turns D into an open simply-connected singular surface,
which we call Sf . The map f : D→ C̄ now factors as in (5), where D is the
unit disc with the usual hyperbolic metric, f1 is a homeomorphism (coming
from the identity map), and f2 is a path isometry. The restriction of f2 onto
each triangle ∆ ∈ T is an isometry, so we can call ∆ a spherical triangle.
The circumscribed radius of each triangle ∆ ∈ T is at most B(f), and the
sum of angles at each vertex is at least 4π . Under the hypotheses of Theorem
1.3 it is at least 6π . Thus one of the conditions (i) or (ii) of Theorem 1.4 is
satisfied.

As f has no asymptotic values the singular surface Sf is complete. Ap-
plying Theorem 1.4 to S = Sf , we find a K -quasiconformal and L-Lipschitz
homeomorphism ψ−1: D→ Sf with K ≥ 1 and L ≥ 1 depending only on ε.

Now we put φ = ψ ◦ f1: D → D. This map φ is a K -quasiconformal
homeomorphism. Post-composing ψ with a conformal automorphism of D,
we may assume φ(0) = 0. Then Mori’s theorem [4, IIIC] yields that |φ(z)| ≤
16|z|1/K for z ∈ D. This implies

disth(0, φ(z)) ≤ 43|r|1/K for z ∈ D(r), r ∈ (0, 32−K],

where disth denotes the hyperbolic distance. Thus by the Lipschitz property
of ψ−1 we obtain that f1 = ψ−1 ◦ φ maps D(r), r ∈ (0, 32−K], into a
disc on Sf centered at f1(0) of radius at most 43Lr1/K . Since f2 is a
path isometry, we conclude that f = f2 ◦ f1 maps the disc D(r0) with
r0 = (32L)−K into a hemisphere centered at f(0). Then Schwarz’s Lemma
implies ‖f ′(0)‖ ≤ (32L)K . 2
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It remains to prove Theorem 1.4. We begin with the study of a projection
map Π which associates a Euclidean triangle with each spherical triangle.

Lemma 2.4 Let ∆ ⊂ Σ be a spherical triangle of spherical circumscribed
radius R < π/2, C its circumscribed circle, and P ⊂ R3 the plane contain-
ing C . Let Π: ∆ → P be the central projection from the origin. Then Π is
an L-bilipschitz map from ∆ onto Π(∆) with L = secR. Furthermore the
ratios of the angles of Π(∆) to the corresponding angles of ∆ are between
cosR and secR.

Further properties of the map Π are stated in Lemmas 3.1 and 3.5. Note
that the triangle Π(∆) is congruent to F∆, where F = chd.

Proof of Lemma 2.4. Take any point p ∈ ∆ and consider the tangent
plane P1 to Σ passing through p. The angle γ < π/2 between P1 and P is
at most R . Suppose that p is different from the spherical center p0 of C .
Then there is a unique unit vector u tangent to Σ at p pointing towards
p0 . Let v be a unit vector perpendicular to u in the same tangent plane.
Then the maximal length distortion of Π at p occurs in the direction of u
and is cosR sec2 γ . The minimal length distortion occurs in the direction of
v and is cosR sec γ . These expressions for the maximal and minimal length
distortion of Π are also true at p = p0 where γ = 0. Considering the extrema
of the maximal and minimal distortion for γ ∈ [0, R] we obtain L = secR .

To study the angle distortion we consider a vertex O of ∆. Let v be
a unit tangent vector to P at O , and its preimage u = (Π−1)′(v) in the
tangent plane to Σ at O . If v makes an angle τ ∈ (0, π) with C , then
the components of v tangent and normal to C have lengths | cos τ | and
sin τ , respectively. The component tangent to C remains unchanged under
(Π−1)′ , while the normal one decreases by the factor of cosR . Thus the
angle between u and C is

η = arccot(secR cot τ). (20)

This distortion function has derivative

dη

dτ
=

cosR

cos2 τ + cos2R sin2 τ
, (21)

which is increasing from cosR to secR as τ runs from 0 to π/2. 2
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Lemma 2.5 Suppose that φ: ∆ → C is an affine map of a Euclidean tri-
angle, whose angles are α ≤ β ≤ γ . Let L be the Lipschitz constant of φ,
and let l be the maximal Lipschitz constant of the three maps obtained by
restricting φ to the sides of ∆. Then L ≤ lπ2β−2 .

Proof. Let u1 and u2 be unit vectors in the directions of those sides of
∆ that form the angle β . Let u be a unit vector for which

L = |φ′u|. (22)

If u = c1u1 + c2u2 , then by taking scalar products we obtain

(u, u1) = c1 + c2(u1, u2),
(u, u2) = c1(u1, u2) + c2.

Solving this system with respect to c1 and c2 by Cramer’s Rule, and using
trivial estimates for products, we get

|cj| ≤
2

1− (u1, u2)2
= 2 csc2(β).

By substituting this into (22), we conclude L ≤ (|c1| + |c2|)l ≤ 4l csc2(β) ≤
lπ2β−2 . 2

Lemma 2.6 For q ∈ (0, 1) the metric in the disc D(
√

2) given by the length
element

λ(z)|dz| := 2qRq|z|q−1|dz|
R2q − |z|2q , where R :=

√
2

(
1 + q

1− q

)1/(2q)

, (23)

has constant curvature −1 everywhere in D(
√

2)\{0}. Its density λ is a
decreasing function of |z| ∈ (0,

√
2) with infimum

√
(1− q2)/2.

This is proved by a direct computation. 2

We will repeatedly use the following facts.
If F is a concave non-decreasing function with F (0) = 0 and F (x) > 0 for

x > 0, then the inequalities a, b > 0 and c < a+b imply F (c) < F (a)+F (b).
Thus for every spherical or Euclidean triangle ∆ the transformed Euclidean
triangle ∆̃ = F∆ is defined.

This applies to both side distortion functions in (8) and (9).
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If α ≤ β ≤ γ are the angles of ∆, then the corresponding angles α̃, β̃, γ̃ of
∆̃ satisfy α̃ ≤ β̃ ≤ γ̃ . This follows from a well-known theorem of elementary
geometry that larger angles be opposite larger sides.

Derivation of Theorem 1.4 from Theorems 1.5 and 1.6. Let us assume
that condition (i) of Theorem 1.4 holds. (The proof under condition (ii) is
similar).

We will construct the required map in two steps. First we will map the
given singular surface S onto a singular surface S̃ which has the flat Eu-
clidean metric everywhere except at a set consisting of isolated singularities,
where we have some definite positive total angle excess.

To each triangle ∆ ∈ T we assign a Euclidean triangle ∆̃ = Fk∆. The
subadditivity ensures that ∆̃ is well defined. If ∆1 and ∆2 in T have a
common side or common vertices, then we identify the corresponding sides
or vertices of ∆̃1 and ∆̃2 . For the identification of common sides we use
arclength as the identifying function. By gluing the triangles ∆̃ together in
this way, we obtain a new singular surface S̃ . It is Euclidean everywhere
except at the vertices of the triangles ∆̃. The total angle at each vertex is
at least 2π(1 + 2δ) by Theorem 1.5.

Now we construct a bilipschitz map ψ1:S → S̃ . We will define it on each
triangle in T in such a way that the definitions match on the common sides
and vertices of the triangles. For a given triangle ∆ ∈ T we put ψ1|∆ = φ◦Π,
where Π is the central projection map from Lemma 2.4, and φ is the unique
affine map of the Euclidean triangles Π(∆)→ ∆̃.

According to the identifications used to define S̃ and since our maps
between triangles map vertices to vertices, it is clear that the definition of
ψ1 matches for common vertices of triangles. Let s be a common side of two
triangles ∆1 and ∆2 in T . Then we place ∆1 and ∆2 on the sphere Σ in
such a way that they have this common side and consider the planes P1 and
P2 in R3 passing through the vertices of ∆1 and ∆2 , respectively. Then the
central projections Π1 and Π2 from Σ to P1 and P2 , respectively, match on
s, which is mapped by both projections onto the chord of Σ connecting the
endpoints of s in R3 . That the affine maps φ1: Π1(s)→ S̃ and φ2: Π2(s)→ S̃
match is evident.

Our surfaces S and S̃ carry intrinsic metrics. Therefore, in order to show
that ψ1 is L-bilipschitz it suffices to show that the restriction of ψ1 to an
arbitrary triangle ∆ in T is L-bilipschitz. Since the circumscribed radius of
∆ is bounded away from π/2, Lemma 2.4 gives a bound for the bilipschitz
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constant for the projection part Π of ψ1 independent of ε. (In case (ii) of
Theorem 1.4 it will depend on ε.) To get an estimate for the affine factor
φ we first consider length distortion on the sides of Π(∆). According to the
definition of Fk in (8), a side of Π(∆) of length a is mapped onto a side
of ∆̃ with length min{ka,√a}. Since 0 < a < 2 and k ≥ 1, we obtain
1/
√

2 ≤ min{ka,√a}/a ≤ k . So the length distortion of φ on the sides is
at most max{k,

√
2}. Moreover, we note that the diameter of each triangle

∆̃ is less than
√

2. To estimate the distortion in the interior of Π(∆) we
consider two cases.

If the diameter d of Π(∆) is at most 1/k2 , then the triangle ∆̃ is obtained
from Π(∆) by scaling its sides by the factor k . In particular, these triangles
are similar, so the affine map φ is a similarity, and the distortion in the
interior of Π(∆) is equal to the distortion on the sides.

To deal with the the case d > 1/k2 first we note that the circumscribed
radius r of Π(∆) is at most 1. If we denote by α′ ≤ β′ the two smaller angles
of Π(∆), then α′+ β′ ≥ arcsin(d/(2r)) ≥ 1/2k2 , and so β′ ≥ 1/(4k2). Then
Lemma 2.5 gives an estimate of the Lipschitz constant of φ. To estimate
the Lipschitz constant of φ−1 we notice that the intermediate angle β̃ of ∆̃
satisfies β̃ > β/2 ≥ (β′ cosR)/2 in view of Theorem 1.5 and Lemma 2.4.
This gives β̃ ≥ cos b0/(8k

2). So Lemma 2.5 gives a bound for the Lipschitz
constant of φ−1: ∆̃→ Π(∆) as well.

In any case, we see that ψ1 restricted to any triangle in T is L-bilipschitz
with bilipschitz constant only depending on k , and hence only on ε. As we
stated above this implies that ψ1:S → S̃ is L-bilipschitz. Then ψ1 is also
K -quasiconformal with K = L2 .

Thus we have proved that ψ1:S → S̃ is L-bilipschitz and K -quasicon-
formal with L and K depending only on ε.

Now we proceed to the second step of our construction, and find a con-
formal map ψ2: S̃ → D. Since S is an open and simply-connected surface,
S̃ has the same properties. By the Uniformization Theorem there exists a
conformal map g:D(R)→ S̃ , where 0 < R ≤ ∞. We will estimate ‖g′‖. If
the total angle at a vertex v ∈ S̃ is

2πα ≥ 2π(1 + 2δ) (24)

and z0 = g−1(v), we have

|g′(z)| ∼ const|z − z0|α−1, z → z0, (25)
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and
ρv(g(z)) ∼ const|z − z0|α, z → z0, (26)

where ρv(w) stands for the distance from a point w ∈ S̃ to the vertex
v ∈ S̃ . Now we put a new conformal metric on S̃ . Denote by V the
set of all vertices of our covering {∆̃} of S̃ . For a point w ∈ S̃ we put
ρ(w) := inf{ρv(w) : v ∈ V }, which is the distance from w to the set V . The
infimum is actually attained, because our singular surface S̃ is complete and
thus there are only finitely many vertices within a given distance from any
point w ∈ S̃ . As we noticed above the diameter of each triangle ∆̃ ⊂ S̃ is
less than

√
2. Hence ρ(w) <

√
2 for w ∈ S̃ . Let λ be the density in (23)

with q := (1 + δ)−1 . Then (24) implies that for every vertex with total angle
2πα we have

αq > 1. (27)

Following Ahlfors we define a conformal length element Λ(w)|dw| with the
density

Λ(w) := λ(ρ(w)), w ∈ S̃\V.
Since ρ <

√
2 this is well-defined. For each point p ∈ S̃\V we can choose

a vertex v(p) ∈ V closest to p. Then in a neighborhood of p the metric
λ(ρv(p)(w))|dw| is a supporting metric of curvature −1 in the sense of [5,
Section 1-5] for Λ(w)|dw| . In view of (25), (26), (23) and (27) the density
of the pullback of the metric Λ(w)|dw| via the map g has the following
asymptotics near the preimage z0 of a vertex v

Λ(g(z))|g′(z)| = λ(ρv(g(z)))|g′(z)| = O(|z − z0|αq−1) = o(1), z → z0.

The Ahlfors–Schwarz Lemma and Lemma 2.6 now imply that for arbitrary
0 < r < R

|g′(z)| ≤ (inf Λ)−1 2r

r2 − |z|2 ≤
2
√

2r√
1− q2(r2 − |z|2)

, z ∈ D(r). (28)

This inequality shows that R < ∞. So we can assume without loss of
generality that R = 1. Then (28) is true for r = 1, and this implies ‖g′‖ ≤√

2(1− q2)−1/2 . In other words, if we put ψ2 := g−1 , then ψ−1
2 is a Lipschitz

map with Lipschitz constant
√

2(1 − q2)−1/2 which depends only on δ and
hence only on ε.

Composing our maps we obtain ψ = ψ2 ◦ ψ1:S → D. Then ψ is K -
quasiconformal and ψ−1 is L-Lipschitz with K and L depending only on ε.
This proves Theorem 1.4. 2
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3 Outline of the proof of Theorem 1.5. The

generic case.

We use the notation F∆ and D(F,∆) defined in (7). For the proof of
Theorem 1.5 we need first of all an increasing subadditive function F with
F (0) = 0 such that

D(F,∆) > 1/2 (29)

for every spherical triangle ∆ of circumscribed radius less than b0 . An
analytic function F with these properties is F∞ :=

√
chd . That F∞ indeed

satisfies (29) is the core of our argument (Lemmas 3.1–3.4). We split F∞ into
the composition of chd and

√
and introduce the intermediate Euclidean

triangle ∆′ = chd ∆, which is obtained by replacing the sides of ∆ by the
corresponding chords. Then ∆̃ := F∞∆ =

√
∆′ . Replacing the sides by

their chords may decrease the angles by a factor of 1/3, and taking square
roots of the sides of a Euclidean triangle may decrease the angles by a factor
of 1/2. Nevertheless, the two parts of our map somehow compensate each
other, and we get (29) for F = F∞ .

In fact the function F∞ is not good enough for our purposes for two
reasons.

1) F ′∞(0) =∞, so the map it induces cannot be bilipschitz.
2)The inequality (29) with F = F∞ is best possible, while we need a

lower estimate of the form 1/2 + δ . The distortion D(F∞,∆) becomes close
to 1/2 in two situations. First, when ∆ is close to the extremal equilateral
triangle. This is avoided by our assumption that the circumscribed radius of
a triangle is bounded away from b0 . Second, the distortion D(F∞,∆) may
tend to 1/2 as ∆ degenerates.

A natural remedy for both drawbacks of F∞ is to introduce a ‘cutoff’, that
is, to use Fk = min{k chd ,

√
chd } with sufficiently large k . Unfortunately,

for F = Fk it is harder to prove (29) directly.
We split all spherical triangles into several categories, according to the

degree of their degeneracy. Triangles with only one small angle are dealt with
in Section 4. This is a relatively simple case. The worst problems occur when
a triangle has two small angles. But given that the circumscribed radius is
bounded by b0 < π/2, such triangles have to be small (Lemma 3.5). So
their distortion can be studied using Euclidean trigonometry. This we do in
Section 5. Finally, in Section 6 we derive Theorem 1.5 from all these special
cases.
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The proof of Theorem 1.6 consists of similar steps, but each step is much
easier. For instance, the counterparts of the Lemmas 3.2–3.4 and 5.3 are
completely trivial.

Now we proceed to the formal proofs.

In the rest of this section we consider spherical triangles ∆ ⊂ Σ with one
marked vertex O . The sides of ∆ are a, b, c and the angles opposite to these
sides are α, β, γ . We assume that the angle at O is γ .

We first study the distortion of the angle γ under the transformation
∆̃ = F∞∆, defined in the Introduction, where

F∞(t) =
√

chd t. (30)

For this purpose we do the following construction. Let C ⊂ Σ be the cir-
cumscribed circle of ∆ and r its Euclidean radius. Let R < π/2 be the
spherical circumscribed radius of ∆, that is, the radius of the spherical disc
in Σ that contains ∆ and is bounded by C . Then

r = sinR. (31)

As in Lemma 2.4, P is the plane containing the vertices of ∆ (and thus
containing C ), and Π is the central projection of the circumscribed disc to
P from the origin. Then ∆′ = Π(∆) ⊂ P is a Euclidean triangle with sides
chd a, chd b, chd c, and ∆̃ = F∞∆ = G∞∆′ , where

G∞(x) =
√
x. (32)

We use the same letters to denote the corresponding sides and angles of the
triangles ∆,∆′ and ∆̃ with primes for ∆′ and tildes for ∆̃.

Let 2φ = γ′, φ ∈ (0, π/2), and t ∈ (φ, π − φ) be the angle between the
bisector of γ′ and the circle C at the point O . Then the three parameters
(R, φ, t) describe all possible spherical triangles with a chosen vertex. See
Figure 1.

First we study the angle distortion by Π.

Lemma 3.1 Among all spherical triangles ∆ with fixed circumscribed radius
R < π/2 and fixed angle γ′ = 2φ the largest angle γ occurs when ∆ is
isosceles with two equal sides meeting at γ .

Proof. From (20) and (21) we obtain

γ = γ(t) = arccot(secR cot(t+ φ))− arccot(secR cot(t− φ)) (33)

=

∫ t+φ

t−φ

cosRdτ

cos2 τ + cos2R sin2 τ
=:

∫ t+φ

t−φ
µ(τ) dτ.
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Figure 1: Plane P

Then µ is increasing on [0, π/2] and satisfies µ(τ) = µ(π/2 − τ). So for
fixed φ the maximum of the integral occurs when t = π/2, which proves the
lemma. 2

Now we consider the distortion of the angle γ′ of the Euclidean triangle
∆′ = Π(∆) under the transformation ∆′ 7→ G∞∆′ = ∆̃ with G∞ as in (32).

Lemma 3.2 Among all Euclidean triangles ∆′ with fixed circumscribed ra-
dius r and fixed angle γ′ = 2φ the smallest angle γ̃ in ∆̃ = G∞∆′ occurs
when ∆′ is isosceles with two equal sides meeting at γ′ .

Proof. Since the triangles we consider are Euclidean and the distortion
function G∞ is homogeneous, we may assume without loss of generality that
r = 1. Then the sides of ∆′ are (see Figure 1)

a′ = 2 sin(t− φ), b′ = 2 sin(t+ φ), c′ = 2 sin 2φ,

and the sides of ∆̃ are
√
a′,
√
b′,
√
c′ . By the Law of Cosines

cos γ̃(t) =
sin(t− φ) + sin(t+ φ)− sin 2φ

2
√

sin(t− φ) sin(t+ φ)
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=
2 sin t cosφ− 2 sinφ cosφ

2
√

sin2 t− sin2 φ

= cosφ

√
1− 2 sinφ

sin t+ sinφ
.

The last expression has a maximum for φ ≤ t ≤ π/2 at t = π/2. 2

As a corollary from Lemmas 3.1 and 3.2 we obtain the following.

Lemma 3.3 Among all spherical triangles ∆ with fixed circumscribed radius
R < π/2 and fixed angle γ′ the ratio γ̃/γ is minimal for the isosceles triangle
∆ with two equal sides meeting at γ . Here γ̃ is the angle of ∆̃ = F∞∆,
corresponding to γ .

Proof. It is clear that ∆′ = Π(∆) is isosceles with two equal sides meeting
at γ′ if and only if ∆ is isosceles with two equal sides meeting at γ . Using
Lemmas 3.1 and 3.2 and the notation introduced in their proofs, we have
γ′(t) ≡ 2φ = const for φ ≤ t ≤ π/2, and thus

γ̃(t)

γ(t)
≥ γ̃(π/2)

γ(π/2)
.

2

Now we state and prove the main result of this section.

Lemma 3.4 If F∞ is the function of (30), then the distortion satisfies
D(F∞,∆) > 1/2 for all spherical triangles ∆ of circumscribed radius R < b0 .

Proof. In view of Lemma 3.3 it is enough to show that for every isosceles
spherical triangle ∆ of circumscribed radius R < b0 which has two equal
sides meeting at γ , we have γ̃ > γ/2. In other words, we fix R < b0 and
t = π/2 and study the ratio γ̃/γ as a function of φ.

We have
chd a = chd b = r chd (π − 2φ) = 2r cosφ (34)

and chd c = r chd 4φ = 4r cosφ sinφ, where r is the same as in (31). Elimi-
nating φ from these relations and using (31) we obtain

sin
c

2
= 2 sin

a

2

√
1− sin2(a/2)

sin2R
. (35)
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Now the lengths of the sides of ∆̃ are the square roots of the lengths of the
sides chd a, chd a, chd c of ∆′ , so by the Law of Cosines and (35)

cos γ̃ =
2chd a− chd c

2chd a
= 1− sin(c/2)

2 sin(a/2)
= 1−

√
1− sin2(a/2)

sin2R
. (36)

For the angle γ we use (33) to obtain

γ = π − 2 arctan [cosR tan(π/2− φ)] =: π − 2 arctanU.

So, using (34) and (31)

cos
γ

2
= sin(arctanU) =

U√
1 + U2

=
cosR cotφ√

1 + cos2R cot2 φ

=
cosR cosφ√

sin2 φ+ cos2R cos2 φ
(37)

=
cotR chd a

2
√

1− sin2R cos2 φ

=
cotR sin(a/2)

cos(a/2)
=

tan(a/2)

tanR
.

Our goal is to prove that γ̃ > γ/2, which is equivalent to

cos γ̃ < cos(γ/2). (38)

In view of (37) and (36) this is equivalent to

1−

√
1− sin2(a/2)

sin2R
<

tan(a/2)

tanR
.

Introducing temporary notation T = tanR ∈ (0,∞) and t = tan(a/2) ∈
(0, T ] we rewrite the previous inequality as

1− t

T
<

√
1− 1 + T 2

T 2

t2

1 + t2
=

√
T 2 − t2

T
√

1 + t2
,

or √
(T − t)(1 + t2) <

√
T + t,
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which after simplification becomes

t2 − Tt+ 2 > 0.

This holds for every t ∈ (0, T ] if T 2−8 < 0, which is tanR < 2
√

2, and this
is the same as R < b0 . This proves (38) and Lemma 3.4. 2

This is the only place in our proof where the numerical value of b0 is
essential.

The following lemma is used in our study of degenerating triangles, which
will occupy the rest of the proof.

Lemma 3.5 Let ∆ be a spherical triangle of circumscribed radius R < π/2,
and spherical diameter d, let α ≤ β ≤ γ be its angles, and α′ ≤ β′ ≤ γ′ be
the corresponding angles of ∆′ = Π(∆). Then

(1/2) chd d cotR ≤ α+ β ≤ 4 chd d csc(2R). (39)

Moreover, if chd d ≤ 2−1/2 sin(R/2), then

α ≤ α′ and β ≤ β′. (40)

Notice that if R is bounded away from π/2, then Lemma 3.5 implies
α+ β � d/R . Furthermore, α ≤ α′ , β ≤ β′ if d/R is small enough.

Proof. The Law of Sines shows that if d′ = chd d is the diameter of ∆′

and r = sinR is its circumscribed radius, then

sin(α′ + β′) = d′/(2r).

Since α′ and β′ are the two smaller angles of ∆′ , we have α′ + β′ ≤ 2π/3.
Hence

α′ + β′ ≥ arcsin

(
d′

2r

)
,

with equality if d′/(2r) < sin(π/3) =
√

3/2. Using x ≤ arcsin x ≤ πx/2 for
0 ≤ x ≤ 1 we obtain for d′/(2r) <

√
3/2

d′

2r
≤ α′ + β′ ≤ 2d′

r
. (41)

Here the left inequality is always true. But if d′/(2r) ≥
√

3/2, then the
right inequality also holds since α′ + β′ ≤ 2π/3. Lemma 2.4 gives α′/α ∈
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[cosR, secR] and similar bounds for β̃/β . From this and (41) the inequality
(39) follows.

To prove (40) we recall the angle distortion function η = arccot(secR cot τ)
from (20), whose derivative, given by (21), is increasing on (0, π/2). The
equation dη/dτ = 1 has a unique solution on [0, π/2], namely

τ0 = arcsin(2−1/2 sec(R/2)) ≥ 2−1/2 sec(R/2).

This means that for every sector of opening τ in the plane P both of whose
sides are within an angle of τ0 from the tangent to the circumscribed circle,
the spherical angle η corresponding to τ under the map Π is smaller than
τ .

Suppose the largest angle γ′ in a Euclidean triangle is greater than π/2.
Consider a vertex O ∈ C of a smaller angle. Then this smaller angle is
contained in a sector with vertex O and opening π−γ′ , which is determined
by the tangent to C at O and the largest side of the triangle. Using this we
see that (40) is satisfied if π− γ′ = α′+ β′ ≤ τ0 < π/2. By (41) this holds if
chd d ≤ 2−1/2 sin(R/2). 2

4 The case of one small angle.

For a fixed circumscribed radius R < π/2 there are two ways a triangle can
become degenerate: it may have one small angle or two small angles. In this
section we consider the first of these two cases.

Lemma 4.1 Let (Hk) be a sequence of concave increasing functions on [0, π)
with the following properties

1. Hk(0) = 0 and Hk(x) > 0 for x > 0, k ∈ N.

2. Hk(x)/x ≤M(x) <∞ for x > 0, k ∈ N.

3. If (xk) is a sequence in (0, π) with limxk = 0, then Hk(xk)/xk →∞.

We consider a sequence (∆k) of spherical triangles with circumscribed radii
bounded by R < π/2. Let the angles of ∆k be αk ≤ βk ≤ γk , and assume
that αk → 0, βk → β0 ∈ (0, π), γk → γ0 ∈ (0, π).

If α̃k ≤ β̃k ≤ γ̃k are the angles of the transformed triangle ∆̃k = Hk∆k ,
then
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α

β
a c-b

b

b

Figure 2: Triangle ∆

(i) lim α̃k/αk > 1/2, and

(ii) lim β̃k/βk > 1/2.

Proof. We will omit the subscript k in the proof, and tacitly assume that
all limits are understood for k → ∞. As usual we will denote the sides of
the triangle ∆ by a ≤ b ≤ c, and the corresponding sides of the triangle ∆̃
by ã ≤ b̃ ≤ c̃.

By the Spherical Law of Sines [12, p. 150] we have

sin a

sin b
=

sinα

sin β
. (42)

By our assumption on the circumscribed radius of the triangles, the lengths
of all sides are bounded away from π . Moreover, sin β → sin β0 6= 0. Hence
α → 0 implies a → 0. Note that by the same reasoning we get a/b → 0
which will be needed in the proof of Lemma 4.3.

Since ∆ is contained in a sector of opening angle α→ 0, we have

area ∆ = α+ β + γ − π → 0. (43)

Hence β + γ → π = β0 + γ0 , which implies

β0 ≤ π/2. (44)
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One of Napier’s Analogies [12, p. 160] shows

tan ((c− b)/2)

tan (a/2)
=

sin ((γ − β)/2)

sin ((γ + β)/2)
→ cosβ0. (45)

Since a → 0 and all sides are bounded away from π , this gives c − b → 0.
But then we conclude from (45) that

c− b
a
→ cosβ0 ≥ 0. (46)

Concavity implies
H(c)−H(b)

c− b ≤ H(b)

b
≤ H(a)

a
. (47)

Using this, Mollweide’s3 Formula (which is the Euclidean limit case of (45)
[12, p. 61]), and (46) we get

lim
sin ((γ̃ − β̃)/2)

sin ((γ̃ + β̃)/2)
= lim

c̃− b̃
ã

= lim
H(c)−H(b)

H(a)
(48)

≤ lim
c− b
a

= cosβ0.

On the other hand, since α̃+ β̃ + γ̃ = π and α̃ ≤ β̃ we have

sin ((γ̃ − β̃)/2)

sin ((γ̃ + β̃)/2)
= cos β̃ − tan(α̃/2) sin β̃ ≥ 2 cos β̃ − 1. (49)

Since β0 ≤ π/2 inequalities (48) and (49) imply

lim cos β̃ ≤ (1 + cosβ0)/2 = cos2(β0/2) < cos(β0/2).

Here (and below in (50)) it is crucial that β0 > 0. We get lim β̃ > β0/2
which implies (ii).

Since β̃ is the second largest angle in the Euclidean triangle ∆̃, we have
β̃ ≤ π/2. Therefore, from (44) and (ii) we get

lim
sin β̃

sin β
≥ sin(β0/2)

sin β0
= (1/2) sec(β0/2) > 1/2. (50)

3Actually first published by Newton [21].
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From the the Spherical and Euclidean Laws of Sines and the assumption
that α→ 0 we obtain

lim α̃/α ≥ lim
sin α̃

sinα
= lim

ã sin b sin β̃

b̃ sin a sin β

≥ lim
sin β̃

sin β
· lim ã sin b

b̃ sin a
. (51)

We consider

l := lim
ã sin b

b̃ sin a
= lim

H(a)

a

b

H(b)

sin b

b
. (52)

Given any subsequence of our triangles, one can select from it another subse-
quence, such that either lim b > 0 or lim b = 0. In the first case, the estimate
sinx/x � 1 for x > 0 bounded away from π , and properties 2 and 3 of the
functions Hk imply that l =∞ in (52) for the selected subsubsequence. In
the second case, when lim b = 0, we see from (47) that l ≥ 1 in (52). This
shows that for every subsequence l ≥ 1. Now (i) follows from (51) and (50).
2

We need a similar lemma for Euclidean triangles.

Lemma 4.2 Let H be a concave increasing function on [0,∞) with H(0) =
0 and H(x) > 0 for x > 0. We consider a sequence of Euclidean triangles
(∆k) with angles αk ≤ βk ≤ γk and assume that αk → 0, βk → β0 ∈ (0, π)
and γk → γ0 ∈ (0, π).

If α̃k ≤ β̃k ≤ γ̃k are the angles of the transformed triangle ∆̃k = H∆k ,
then

(i) lim α̃k/αk > 1/2, and

(ii) lim β̃k/βk > 1/2.

Proof. We follow the lines of the proof of Lemma 4.1 with the following
modifications. We use the Euclidean Law of Sines instead of (42) to conclude
that a/b→ 0. Formula (43) is replaced by the identity α+β+ γ = π which
implies β + γ → π . Again (44) follows. Instead of Napier’s Analogy we use
Mollweide’s Formula to obtain (46). Again (47) is true. Formulas (48), (49),
and the proof of (ii) are exactly the same. The inequality (i) follows by a
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similar (and easier) computation as in (51) using the Euclidean Law of Sines,
(50), and (47), namely,

lim
α̃

α
≥ lim

sin α̃

sinα
= lim

ãb sin β̃

b̃a sin β

≥ lim
H(a)

a

b

H(b)
· lim sin β̃

sin β

≥ lim
sin β̃

sin β
>

1

2
.

2

We define G1(t) = min{t,
√
t}, t ≥ 0, and recall definition (8) of the

functions Fk .

Lemma 4.3 Consider a sequence (∆k) of Euclidean triangles, or of spher-
ical triangles with circumscribed radius uniformly bounded by R < π/2. Let
the angles of ∆k be αk ≤ βk ≤ γk , and assume that αk → 0, βk → β0 ∈
(0, π), γk → γ0 ∈ (0, π).

Put Hk = G1 in the case of Euclidean triangles, and Hk = Fk in the case
of spherical triangles for k ∈ N.

Then
limD(Hk,∆k) > 1/2.

Proof. We use the notation of Lemmas 4.1 and 4.2 and their proofs. Note
that the functions Hk , k ∈ N, satisfy the assumptions of Lemma 4.2 in the
Euclidean case, and the requirements 1–3 of Lemma 4.1 in the spherical case.
So it is enough to prove

lim γ̃k/γk > 1/2. (53)

Our functions Hk have the the following additional property

Hk(x)/Hk(y) ≤ max{
√
x/y,

√
chd x/chd y} for 0 < x ≤ y. (54)

Now we again drop the subscript k .
From (54), the asymptotic relations a/b → 0 obtained in the proofs of

Lemma 4.1 and Lemma 4.2, and chd x � x for x > 0 bounded away from
π , we conclude ã/b̃ = H(a)/H(b) → 0 both in the Euclidean and spherical
case.
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Then sin α̃→ 0 by the Law of Sines. Since α̃ is the smallest angle in ∆̃
this implies α̃ → 0. Hence β̃ + γ̃ → π . Since γ̃ is the largest angle in ∆̃
this shows lim γ̃ ≥ π/2. Thus lim γ̃/γ ≥ π/(2γ0) which gives (53). 2

5 The case of two small angles. Euclidean

triangles.

Now we have to investigate what happens when two angles become small.
As we are dealing with a spherical triangle whose circumscribed radius is
bounded away from π/2, the presence of two small angles implies that the
diameter of the triangle is small (see Lemma 3.5). So it is ‘almost’ Euclidean,
which explains why we study Euclidean triangles here. The side distortion
function is

Gk(t) = min{kt,
√
t}, t ≥ 0, k > 0. (55)

As the angles of Euclidean triangles are scaling invariant it is enough to
consider the case when k = 1 in (55). Notice the following three properties
of G = G1 :

G(x+ y) ≤ G(x) +G(y), x, y ≥ 0. (56)

This holds because G is concave, increasing and G(0) = 0.

G2(x+ y) ≥ G2(x) +G2(y), x, y ≥ 0. (57)

The function G2 is not convex, but nevertheless satisfies (57), which can be
seen by consideration of four simple cases depending on the location of the
three points x, y and x+ y with respect to the point 1.

G(x2) = G2(x), x ≥ 0. (58)

In this section we consider Euclidean triangles ∆ with sides a, b, c and
angles α, β, γ opposite to these sides. The transformed triangle ∆̃ = G∆ has
sides ã, b̃, c̃ and angles α̃, β̃, γ̃ such that the sides or angles that correspond
under the transformation are denoted by the same letter.

Lemma 5.1 If G: [0,∞)→ [0,∞) is a concave increasing function satisfy-
ing (56), (57), (58) and G 6≡ 0, then D(G,∆) > 1/2 for every Euclidean
triangle ∆.
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Proof. It follows from concavity that G(t) > 0 for t > 0. Then (57)
implies that G is strictly increasing.

We check the distortion of γ . By the Cosine of Half-Angles Formula [12,
p. 60]

c =
√

(a+ b)2 − 4ab cos2(γ/2). (59)

We are going to prove the inequality γ̃ > γ/2, which is equivalent to cos γ̃ <
cos(γ/2). By the Law of Cosines this is equivalent to

G2(a) +G2(b)−G2(c)

2G(a)G(b)
< cos

γ

2
. (60)

Introducing t = cos(γ/2), 0 < t < 1, we substitute (59) into (60) and use
(58) to transform (60) to the following equivalent form

G2(a) +G2(b)− 2G(a)G(b)t < G
(
(a+ b)2 − 4abt2

)
. (61)

For fixed a and b the right hand side of (61) is strictly concave (concave
and not linear) with respect to t as a composition of the strictly increasing
concave function G and the strictly concave function t 7→ (a + b)2 − 4abt2 .
The left hand side of (61) is linear in t. So by the Maximum Principle it
is enough to verify the inequality on the boundary of the segment [0, 1].
Moreover, it is enough to verify non-strict inequality on the boundary, to
conclude that (61) is a strict inequality.

For t = 0 we use (58) again and obtain G2(a)+G2(b) ≤ G2(a+ b), which
is the same as (57).

For t = 1 we also use (58) and obtain (G(a)−G(b))2 ≤ G2(|a−b|) which
is equivalent to (56). 2

Again as in Section 3 the bound 1/2 for the distortion in Lemma 4.1 is
best possible. The next lemma singles out the case when the distortion can
be close to 1/2.

Lemma 5.2 There exists an increasing function g: (0, 2π/3]→ (0,∞), 0 <
g(t) ≤ t, t ∈ (0, 2π/3], with the following property. For every Euclidean
triangle ∆ whose smaller angles are α and β we have for every k > 0
D(Gk,∆) ≥ 1/2 + g(α+ β), where Gk is defined in (55).

Proof. For every s > 0 and every triangle ∆ we denote by s∆ the triangle
similar to ∆ obtained by multiplying all sides of ∆ by s.
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As Gk∆ is similar to G1k
2∆ we can assume without loss of generality

that k = 1.
It is enough to show that if the sum of the two smaller angles of a tri-

angle ∆ is bounded below by a constant µ ∈ (0, 2π/3], then the distortion
D(G1,∆) is bounded away from 1/2.

Assuming this not the case, we find a sequence (∆k) of triangles with the
sum of the two smaller angles

αk + βk ≥ µ > 0, (62)

and
limD(G1,∆k) ≤ 1/2. (63)

Without loss of generality we have αk ≤ βk . Moreover, by selecting a sub-
sequence we may assume that all three angles of ∆k have limits as k →∞.
Now we consider two cases.

Case 1. limαk > 0. Then limβk > 0. We put sk := (diam∆k)
−1 . By

selecting a subsequence we may assume that sk tends to a limit, possibly
infinite.

If lim sk ∈ (0,∞), then ∆k → ∆ for some (non-degenerate!) triangle ∆,
and from (63) we obtain D(G1,∆) ≤ 1/2, which contradicts Lemma 5.1.

If lim sk =∞, then sk∆k → ∆ for some triangle ∆. The triangles G1∆k

are similar to skG1∆k , so by (63)

D(G0,∆) ≤ 1/2, (64)

where G0(t) := limk→∞ skG1(s−1
k t) = t. So G0 is a linear function, and it

does not distort angles at all, which contradicts (64).
If lim sk = 0, then again sk∆k → ∆ for some triangle ∆. The triangles

G1∆k are similar to s
1/2
k G1∆k , so by (63)

D(G∞,∆) ≤ 1/2, (65)

where G∞(t) := limk→∞ s
1/2
k G1(s−1

k t) =
√
t. Obviously, G∞ is a monotone

function which satisfies (56), (57) and (58). Then (65) contradicts Lemma
5.1. This completes Case 1.

Case 2. limαk = 0. Then our assumption (62) implies that βk has a positive
limit, which is strictly less than π , because βk is the second largest angle in
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∆k . Moreover, it is clear that the limit of the largest angles γk in ∆k also
belongs to (0, π).

So we are in the situation of the Euclidean case of Lemma 4.3. Thus we
obtain a contradiction to (63). 2

Now we need a better estimate for the distortion of the largest angle in a
triangle with two small angles.

Lemma 5.3 Let ∆ be a Euclidean triangle with angles α ≤ β ≤ γ . Let γ̃
be the angle in ∆̃ = Gk∆, k > 0, corresponding to the angle γ in ∆, where
Gk is defined in (55). Then

γ̃ ≥ π/2 +O(α+ β)2, α+ β → 0,

uniformly with respect to ∆ and k .

Proof. As in Lemma 5.2 it is enough to consider the case k = 1. We have
a ≤ b ≤ c. Put

φ := π/2− γ̃.
We want to estimate φ from above. From the Law of Sines

a =
c sinα

sin(α+ β)
and b =

c sin β

sin(α+ β)
. (66)

Case 1. a ≤ b ≤ c ≤ 1. Since in this case ∆̃ = ∆ and γ̃ = γ → π as
α+ β → 0, the statement is obvious in this case.

Case 2. a ≤ b ≤ 1 < c. From the Law of Cosines and (66) we now obtain

sinφ = cos γ̃ =
c(sin2 α+ sin2 β)− sin2(α+ β)

2c sinα sin β
. (67)

The right hand side of (67) is an increasing function of c for fixed α and β ,
so we can use the estimate

c ≤ sin(α+ β)

sin β
,
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which follows from (66) and our assumption that b ≤ 1. By substituting this
estimate to (67) we obtain using α ≤ β

sin φ ≤ sin2 α+ sin2 β − sin(α+ β) sin β

2 sinα sin β

=
sin2 α+ sin2 β − (sinα cosβ + cosα sin β) sin β

2 sinα sin β

=
sin2 α− sinα sin β cos β +O(α2 sin2 β)

2 sinα sin β

=
sinα

2 sin β
− cosβ

2
+O(α sin β)

≤ O(β2).

This completes Case 2.

Case 3. a ≤ 1 < b ≤ c. From the Law of Cosines and (66) we now obtain

sin φ = cos γ̃ =
c sin2 α+ sin β sin(α+ β)− sin2(α+ β)

2 sinα
√
c sin β sin(α+ β)

. (68)

The right hand side of (68) is an increasing function of c for fixed α and β ,
so we can use the estimate

c ≤ sin(α+ β)

sinα

which follows from (66) and our assumption a ≤ 1. By substituting this in
the right hand side of (68) we obtain,

sin φ ≤ sinα+ sin β − sin(α+ β)

2
√

sinα sin β

=
sinα+ sin β − sinα cosβ − sin β cosα

2
√

sinα sin β

=
sinα sin2(β/2) + sin β sin2(α/2)

2
√

sin(α/2) sin(β/2) cos(α/2) cos(β/2)

=
sin(α/2) cos(α/2) sin2(β/2) + sin(β/2) cos(β/2) sin2(α/2)√

sin(α/2) sin(β/2) cos(α/2) cos(β/2)

=
cos(α/2) sin3/2(β/2) sin1/2(α/2) + cos(β/2) sin3/2(α/2) sin1/2(β/2)√

cos(α/2) cos(β/2)

= O(α+ β)2.
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This completes Case 3.

Case 4. 1 < a ≤ b ≤ c. In this case G1∆ = G∞∆, where G∞ was defined
in (32). So we can use Lemma 3.2 which says that the smallest ratio γ̃/γ will
occurs for the isosceles triangle of the same circumscribed radius as ∆, and
equal sides meeting at γ . This isosceles triangle has the same angle γ and
thus the same sum α+ β as our triangle ∆. So in this case we can assume
without loss of generality that α = β .

From the Law of Cosines and (66) we obtain

sin φ =
sinα+ sin β − sin(α+ β)

2
√

sinα sin β

=
2 sin β − sin(2β)

2 sinβ
= 2 sin2(β/2)

= O(β2).

This completes Case 4 and the proof of Lemma 5.3. 2

6 Conclusion of the proof of Theorem 1.5.

Proof of Theorem 1.5. The proof is by contradiction. We assume that there
exists ε > 0 such that for every k ≥ 1 and for every δ > 0 there exists a
spherical triangle ∆ with circumscribed radius

R(∆) ≤ b0 − ε (69)

and
D(Fk,∆) ≤ 1/2 + δ.

In particular, putting δ = δk = g2(k−3) for k ∈ N, where g is the function
from Lemma 5.2, there will be a triangle ∆ = ∆k with the properties (69)
and

D(Fk,∆k) ≤ 1/2 + g2(k−3). (70)

We denote the sides of ∆k by ak ≤ bk ≤ ck , the angles of ∆k by αk ≤ βk ≤
γk , the corresponding angles of the transformed triangle ∆′k := chd ∆k by
α′k ≤ β′k ≤ γ′k , and the angles of ∆̃k = Fk∆k = Gk∆

′
k by α̃k ≤ β̃k ≤ γ̃k .

Moreover, we denote the spherical circumscribed radius of ∆k by Rk =
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R(∆k), and its spherical diameter by dk . By Lemma 3.5 these quantities
satisfy the following asymptotic relation

αk + βk � dk/Rk, k →∞. (71)

It is also clear that
dk ≤ 2Rk. (72)

By selecting a subsequence of (∆k), we may assume that all angles involved,
as well as (dk), (Rk) and (dk/Rk) have limits in [0,∞) for k →∞.

Now we consider the following cases 1–4. In all cases, except the very last
one, we will show that

limD(Fk,∆k) > 1/2, (73)

which will contradict (70) because g(t)→ 0 as t→ 0. Only in Case 4 do we
use the full strength of (70) to obtain a contradiction.

Case 1. lim dk > 0.
Then limRk > 0 by (72), and thus by (71)

limαk + limβk =: m > 0. (74)

If limαk > 0, the sequence (∆k) tends to a non-degenerate spherical
triangle ∆, and Fk∆k = F∞∆k for k large enough. So by Lemma 3.4 we
have lim D(Fk,∆k) = D(F∞,∆) > 1/2 which gives (73).

If limαk = 0, then β0 := limβk > 0. Moreover, we claim that γ0 :=
lim γk < π . To prove the claim, we assume the contrary, that is, γk → π .
Then from Delambre’s Formula (sometimes credited to Gauss, [12, p. 162])

cos(γk/2) cos ((ak − bk)/2) = cos(ck/2) sin ((αk + βk)/2)

and the condition that the lengths of the sides of our triangles are bounded
away from π we obtain sin ((αk+βk)/2)→ 0. By (74) this implies αk+βk →
2π . Then area(∆k) = αk + βk + γk − π → 2π . This is impossible, since the
circumscribed radius Rk of ∆k is bounded away from π/2, the radius of a
hemisphere.

So 0 < β0 ≤ γ0 < π , and (73) holds by the spherical case of Lemma 4.3.

Case 2. lim dk = 0 but lim dk/Rk > 0.
Then by (71) we again have (74). In addition limRk = 0, so by Lemma 2.4
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the distortion of angles, coming from the projection Π is negligible, that is,
D(chd ,∆k)→ 1. Now we apply Lemma 5.2, and (74) to conclude that

limD(Fk,∆k) ≥ limD(Gk,∆
′
k) ≥ 1/2 + g(m/2).

This proves (73).

Case 3. lim dk = 0, lim dk/Rk = 0, and dk/Rk = o(k−2) as k →∞.
In this case, we have Fk∆k = k(chd ∆k) for large k . Moreover, αk + βk → 0
by (71). We claim that

limD(Fk,∆k) ≥ 1. (75)

Indeed, from Lemma 3.5 follows that αk ≤ α′k = α̃k and βk ≤ β′k = β̃k
for large k . Moreover, since the circumscribed radii of the triangles ∆k

are bounded away from π/2 we have αk + βk � α′k + β′k by Lemma 2.4.
Thus, lim(α̃k + β̃k) = lim(α′k + β′k) = lim(αk + βk) = 0 which implies that
γ̃k = π − α̃k − β̃k → π . This proves (75), which is stronger than (73).

It remains to consider
Case 4. lim dk = 0, lim dk/Rk = 0, and lim k2dk/Rk > 0.
In this case, by (71) we have that for some m > 0

lim k2(αk + βk) =: 7m > 0, (76)

and αk + βk → 0. First we consider the distortion of the smaller angles αk
and βk . By Lemma 3.5 we have αk ≤ α′k and βk ≤ β′k for large k . Now we
apply Lemma 5.2 to ∆′k and obtain for large k

α̃k/αk ≥ α̃k/α
′
k ≥ 1/2 + g(α′k + β′k) ≥ 1/2 + g(αk + βk)

≥ 1/2 + g(6mk−2) ≥ 1/2 + g(k−3), (77)

and similarly
β̃k/βk ≥ 1/2 + g(k−3). (78)

Now we estimate the distortion of the largest angle γk . We have by the
Spherical Law of Cosines for Angles [12, p. 153]

cos γk = − cosαk cos βk + sinαk sin βk cos dk.

Together with the estimate dk = O(αk + βk), which follows from (71) this
gives

2 sin2

(
π − γk

2

)
= 2 cos2(γk/2) = 1 + cos γk

= 1− cosαk cosβk + sinαk sin βk cos dk

= (αk + βk)
2/2 +O(αk + βk)

4,
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which implies
γk = π − (αk + βk) +O(αk + βk)

2. (79)

On the other hand, using Lemma 5.3 and αk � α′k, βk � β′k we obtain

γ̃k ≥ π/2 +O(α′k + β′k)
2 = π/2 +O(αk + βk)

2.

Comparing this with (79), and taking into account our assumption (76) we
get for large k

γ̃k/γk ≥ 1/2 + (αk + βk)/(2π) +O(αk + βk)
2 ≥ 1/2 +mk−2 ≥ 1/2 + k−3.

Together with (77), (78) and g(t) ≤ t, this implies D(Fk,∆k) ≥ 1/2+g(k−3)
for large k which contradicts (70) because g(x)→ 0 as x→ 0. 2

7 Proof of Theorem 1.6.

We will be using Lemmas 2.4, 3.5, 4.1 and 4.2. In addition we need the
following modifications of Lemmas 4.3, 5.1, 5.2 and 5.3.

We recall that our side distortion function in Theorem 1.6 is

F ∗k (t) = min{k chd t, 1}.

If for k > 0 we define

G∗k(t) = min{kt, 1}, t ≥ 0,

then we have F ∗k = G∗k ◦ chd .
First we prove an analog of Lemma 4.3.

Lemma 7.1 Consider a sequence (∆k) of Euclidean triangles, or of spher-
ical triangles with circumscribed radius uniformly bounded by R < π/2. Let
the angles of ∆k be αk ≤ βk ≤ γk , and assume that αk → 0, βk → β0 ∈
(0, π), γk → γ0 ∈ (0, π).

Put Hk = G∗1 in the case of Euclidean triangles, and Hk = F ∗k in the
case of spherical triangles for k ∈ N.

Then
limD(Hk,∆k) > 1/3.
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Proof. We use the notation of Lemmas 4.1 and 4.2 and their proofs. Note
that the functions Hk , k ∈ N, satisfy the assumptions of Lemma 4.2 in the
Euclidean case, and the requirements 1–3 of Lemma 4.1 in the spherical case.
So the lower limits of the ratios α̃k/αk and β̃k/βk are at least 1/2. Since
γ̃k is the largest angle in the Euclidean triangle ∆̃k we must have γ̃k ≥ π/3.
Hence lim γ̃k/γk ≥ π/(3γ0) > 1/3. 2

Now we have to prove the results, similar to those of Section 5, for the
function G∗1 .

Lemma 7.2 D(G∗1,∆) > 1/3 for every Euclidean triangle ∆.

Proof. Denote the sides of ∆ by a ≤ b ≤ c. Then the the largest side of
∆̃ = G∗1∆ is G∗1(c) and the largest angle of ∆̃ is γ̃ . So γ̃ ≥ π/3 > γ/3. It
remains to check the distortion of the smaller angles α and β . We consider
the following four cases.

Case 1. a ≤ b ≤ c ≤ 1. This case is trivial because G∗1∆ is similar to ∆.

Case 2. a, b ≤ 1 < c. We don’t use the convention a ≤ b in this case. We
claim that α̃ ≥ α and β̃ ≥ β . By symmetry it is enough to check this for α ,
and show that α̃ ≥ α , which is equivalent to cos α̃ ≤ cosα . By the Law of
Cosines this is equivalent to

G∗1(c)2 +G∗1(b)2 −G∗1(a)2

2G∗1(c)G∗1(b)
≤ c2 + b2 − a2

2bc
,

which is the same as

1 + b2 − a2

2b
≤ c2 + b2 − a2

2bc
,

or

c+ cb2 − ca2 ≤ c2 + b2 − a2, or (c− 1)b2 ≤ (c− 1)c+ (c− 1)a2,

or
b2 ≤ c+ a2.

This is true since b2 ≤ 1 < c in this case.

Case 3. a ≤ 1 < b ≤ c. In this case ∆̃ is isosceles with two sides equal to 1,
and β̃ = γ̃ . Thus β̃ ≥ π/3 > β/3. It remains to check the distortion of α .
We verify that α̃ ≥ α , which is equivalent to cos α̃ ≤ cosα , or

1 + 1− a2

2
≤ b2 + c2 − a2

2bc
.

43



The last inequality simplifies to 2bc+ a2 ≤ b2 + c2 + bca2 which is true since
2bc ≤ b2 + c2 and bc ≥ 1.

Case 4. 1 ≤ a ≤ b ≤ c. This case is trivial because ∆̃ is equilateral. 2

The following is a counterpart of Lemma 5.2.

Lemma 7.3 There exists an increasing function g∗: (0, 2π/3]→ (0,∞), 0 <
g∗(t) ≤ t, t ∈ (0, 2π/3], with the following property. For every Euclidean
triangle ∆ whose smaller angles are α and β we have D(G∗k,∆) ≥ (1/3) +
g∗(α+ β) for every k > 0.

Proof. This is derived from Lemmas 7.2 and 7.1, Euclidean case in the
same way as Lemma 5.2 is derived from Lemmas 5.1 and 4.3, Euclidean case.
Only minor modifications are necessary. Namely, G1 should be replaced by
G∗1 and the constant 1/2 by 1/3 throughout the proof. In the last paragraph
of Case 1 the function G∞ is defined by G∞(t) = limG∗1(s−1

k t) ≡ 1, so G∞∆̃
is equilateral and we get a contradiction to the modified version of (65).

To deal with Case 2 we use the Euclidean case of Lemma 7.1 to obtain a
contradiction. 2

Now we need the following trivial counterpart of Lemma 5.3.

Lemma 7.4 If γ is the largest angle in a Euclidean triangle ∆, then for the
corresponding angle γ̃ in ∆̃ := G∗k∆ we have γ̃ ≥ π/3.

Proof. This is clear, since γ̃ is the largest angle in ∆̃. 2

Proof of Theorem 1.6. The proof is by contradiction. We assume that
there exists ε > 0 such that for every k ≥ 1 and for every δ > 0 there exists
a spherical triangle ∆ with circumscribed radius

R(∆) ≤ π/2− ε (80)

and
D(F ∗k ,∆) ≤ 1/3 + δ.

In particular, putting δ = δk = (g∗(k−3))2 for k ∈ N, where g∗ is the
function from Lemma 7.3, there will be a triangle ∆ = ∆k with the properties
(80) and

D(F ∗k ,∆k) ≤ 1/3 +
(
g∗(k−3)

)2
. (81)
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We denote the angles of ∆k by αk ≤ βk ≤ γk , the corresponding angles of the
transformed triangle ∆′k := chd ∆k by α′k ≤ β′k ≤ γ′k , and of ∆̃k = F ∗k∆k =
G∗k∆

′
k by α̃k ≤ β̃k ≤ γ̃k . Moreover, we denote the spherical circumscribed

radius of ∆k by Rk = R(∆k), and its spherical diameter by dk . By Lemma
3.5 we have

αk + βk � dk/Rk, k →∞, (82)

and the following holds
dk ≤ 2Rk. (83)

By selecting a subsequence of (∆k), we may assume that all angles involved,
as well as (dk), (Rk) and (dk/Rk) have limits in [0,∞) for k →∞.

Now we consider the following cases 1–4. In all, except the very last one
we will show that

limD(F ∗k ,∆k) > 1/3, (84)

which will contradict (81) because g∗(t) → 0 as t → 0. Only in Case 4 do
we use the full strength of (81) to obtain a contradiction.

Case 1. lim dk > 0.
Then limRk > 0 by (83), and thus by (82)

limαk + limβk =: m > 0. (85)

If limαk > 0, the sequence (∆k) tends to a non-degenerate spherical
triangle ∆, and F ∗k ≡ 1 on the sides of ∆k for k large enough. This means
that the triangles ∆̃k are equilateral, and all their angles are equal to π/3.
Thus (84) follows.

If limαk = 0, then β0 := limβk > 0. As in Case 1 of the proof of
Theorem 1.5 we see that γ0 := lim γk < π . Hence 0 < β0 ≤ γ0 < π . So (84)
holds by Lemma 7.1, spherical case.

Case 2. lim dk = 0 but lim dk/Rk > 0.
Then by (82) we again have (85). In addition limRk = 0, so by Lemma 2.4
the distortion from the projection Π is negligible, that is, D(chd ,∆k)→ 1.
Now we apply Lemma 7.3 and (85) to conclude that

limD(F ∗k ,∆k) ≥ limD(G∗k,∆
′
k) ≥ 1/3 + g∗(m/2).

This proves (84).
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Case 3. lim dk = 0, lim dk/Rk = 0, and dk/Rk = o(k−2) as k →∞.
In this case we have

limD(F ∗k ,∆k) ≥ 1,

which is proved in the same way as in Case 3 of the proof of Theorem 1.5.

It remains to consider
Case 4. lim dk = 0, lim dk/Rk = 0, and lim k2dk/Rk > 0.

In this case, by (82) we have that for some positive m > 0

lim k2(αk + βk) =: 10m > 0. (86)

First we consider the distortion of the smaller angles αk and βk . By Lemma
3.5 we have αk ≤ α′k and βk ≤ β′k for large k . Now we apply Lemma 7.3 to
∆′k and obtain for large k

α̃k/αk ≥ α̃k/α
′
k ≥ 1/3 + g∗(α′k + β′k) ≥ 1/3 + g∗(αk + βk) (87)

≥ 1/3 + g∗(9mk−2) ≥ 1/3 + g∗(k−3),

and similarly
β̃k/βk ≥ 1/3 + g∗(k−3). (88)

Now we estimate the distortion of the largest angle γk . Again we have
(79) from Section 6:

γk = π − (αk + βk) +O(αk + βk)
2. (89)

On the other hand, Lemma 7.4 gives

γ̃k ≥ π/3.

Comparing this with (89), and taking into account our assumption (86) we
get for large k

γ̃k/γk ≥ 1/3 + (αk + βk)/(3π) +O(αk + βk)
2 ≥ 1/3 +mk−2 ≥ 1/3 + k−3.

Together with (87), (88) and g∗(t) ≤ t this implies D(F ∗k ,∆k) ≥ 1/3+g∗(k−3)
which contradicts (81). 2
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