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1. Let me recall some linear algebra. In linear algebra we study vector spaces;
a vector space is a collection of objects which can be added and multiplied
by numbers so that the usual rules hold. The numbers must be elements of a
filed. By default we use complex numbers, so our vector spaces are complex
vector spaces. Examples of vector spaces are: Cn, it consists of complex
column vectors of size n; this is a complex vector space, and Rn, a similar
real vector space.

If vectors v1, v2, . . . span the space, then every element x of this space can
be written as a linear combination

x = c1v1 + c2v2 + . . . . (1)

To find the coefficients cn of this linear combination one had to solve a system
of linear equations.

A complex vector space can be equipped with an Hermitian (dot) prod-
uct. This is an operation which to every pair of vectors x, y puts into corre-
spondence a number (x, y) so that the following three conditions (i)-(iii) are
satisfied.

(i) (x, y) = (y, x) (here (, ) is the complex conjugation!)

(ii) (c1x1 + c2x2, y) = c1(x1, y) + c2(x2, y)

From (i) and (ii) follows that

(x, c2y1 + c2y2) = c1(x, y1) + c2(x, y2).

They express this by saying that the Hermitian product is linear with respect
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to the first argument, and anti-linear with respect to the second argument1.

(iii) (x, x) ≥ 0 and (x, x) = 0 only if x = 0.

An example of the dot product on Cn is

(x, y) = xTy = x1y1 + x2y2 + . . .+ xnyn,

which is called the standard Hermitian product on Cn. Please, verify that
this example indeed has all properties (i)-(iii).

On a real vector space, the dot product is defined similarly, except in
this case the conjugation bars do nothing and can be omitted both in the
definition and in the example.

It is important to understand that there can be many different dot prod-
ucts on the same vector space. For example, we can take any sequence of
positive numbers a1, a2, . . . , an and define a dot product in Cn by the formula

(x, y) = a1x1y1 + a2x2y2 + . . .+ anxnyn.

More generally, we can take any positive definite Hermitian matrix A and
define the dot product by the formula (x, y) = xTAy. A matrix is called
Hermitian if

AT = A that is aj,i = ai,j for all i, j, (2)

which is equivalent to (Ax, y) = (x,Ay) for the standard Hermitian product
and all x, y. A real matrix is Hermitian if and only if it is symmetric.

The length of a vector a. k. a. the norm is defined by the formula

‖x‖ =
√

(x, x) (non-negative square root!)
A system of vectors v1, v2, . . . is called orthogonal if

(vk, vj) = 0 for every k 6= j.

An orthogonal system is called orthonormal if in addition all vectors of the
system have unit length. In other words, an orthogonal system satisfies

(vk, vj) =

{
0, k 6= j,
1, k = j.

(3)

1In some books, especially in physics, they use the opposite convention, linear with re-
spect to the second argument and anti-linear with respect to the first. I use the convention
from our textbook.
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Every orthogonal system of non-zero vectors is linearly independent. This
means that every vector in the span of this system has a unique representation
in the form (1). Indeed, multiplying both sides of (1) on vn we obtain

(x, vn) = cn(vn, vn),

because all other summands give zero, and since vn 6= 0 we have (vn, vn) 6= 0,
by property (iii) of the dot product, so we can divide and obtain

cn =
(x, vn)

(vn, vn)
. (4)

For an orthonormal system, these formulas simplify to cn = (x, vn). So
orthogonal systems have a great advantage: to obtain a representation of the
form (1) of any vector x in the span of such system, one has a simple formula
(4) instead of having to solve a system of linear equations.

Suppose that v1, v2, . . . is an orthogonal system, a vector x is given by
(1), and let us compute the norm of x. We have, using (3):

‖x‖2 = (x, x) =

(∑
n

cnvn

)(∑
n

cnvn

)
=

∑
m,n

cmcn(vm, vn) =
∑
n

|cn|2‖vn‖2, (5)

again because (vm, vn) = 0 when m 6= n. So the squared norm of x equals
to the sum of the squared norms of the summands in (1). This is the
Pythagorean theorem!

2. In this course we consider vector spaces of infinite dimension. Some
examples of such spaces are:

a) The space of all polynomials on the real line, or on some interval.

b) The space of all continuous functions on an interval, it is denoted by
C[a, b]. The interval can be finite or infinite.

I recall that all functions that we consider are complex-valued by default.
Letter C stands for “continuous”.

c) The space Ck[a, b] which consists of all functions having continuous deriva-
tives up to order k on an interval, and the space C∞ of infinitely differentiable
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functions. (An interval can be open, closed or semi-open. Including an end-
point in the notation means that derivatives must exist and be continuous
at this point as well).

d) The space L2(a, b) of “square-integrable” functions, the precise definition
will be discussed later, but roughly speaking, it consists of those functions
defined on (a, b) for which the integral∫ b

a
|f(x)|2dx <∞

is finite. Again, the interval can be finite or infinite.

e) The space of square summable sequences `2 consists of all complex se-
quences (cn)∞n=−∞ such that

∞∑
−∞
|cn|2 <∞. (6)

All these are vector spaces: any linear combination of two functions (or
sequences) with the stated property also possesses this property. Now we
consider dot products.

The analog of the standard Hermitian product on functions defined on
some interval [a, b] is

(f, g) =
∫ b

a
f(x)g(x)dx. (7)

It is an Hermitian product on all spaces (a)-(c). Verification of properties
(i), (ii) of an Hermitian product causes no difficulty. More subtle is property
(iii): we have to show that∫ b

a
|f(x)|2dx = 0 implies f = 0. (8)

The last statement means that f(x) = 0 for all x ∈ [a, b]. In general, this is
not true for functions: take a function which is equal to 0 at all points except
one. This function is not the zero-function, but its integral is 0. What saves
our examples is that all functions in a)-c) are continuous. For continuous
functions f , statement (8) is true.

A simple and important property which every Hermitian product pos-
sesses is the Cauchy–Schwarz inequality:

|(x, y)| ≤ ‖x‖ ‖y‖;
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for the dot product defined in (7) this means∣∣∣∣∣
∫ b

a
f(x)g(x)dx

∣∣∣∣∣ ≤
√∫ b

a
|f(x)|2dx

√∫ b

a
|g(x)|2dx. (9)

The length of the vector associated with the dot product (7) is called the
square norm:

‖f‖2 =

√∫ b

a
|f(x)|2dx.

Subscript 2 is used it to distinguish it from other norms discussed below.
Some of them are defined using dot products, some are not.

For the space `2 defined in example e), the Cauchy-Schwarz inequality
says

∞∑
−∞

cndn ≤

√√√√ ∞∑
−∞
|cn|2

√√√√ ∞∑
−∞
|dn|2.

Example. Consider the system of functions φn(x) = einx, −∞ < n < ∞
defined on the interval −π ≤ x ≤ π. This system is orthogonal with respect
to the dot product (7) with [a, b] = (−π, π):

(φm, φn) =
∫ π

−π
eimxe−inxdx =

{
0, m 6= n,
2π, m = n.

(10)

So the system
1√
2π
einx, −∞ < n <∞

is orthonormal in spaces of functions in [−π, π] (examples (b), (c), (d)).

Suppose that a function f belongs to the span of (φn), that is

f(x) =
∑
n

cne
inx, −π ≤ x ≤ π.

To find cm we dot-multiply both sides on φm(x) = eimx and use the orthog-
onality relation (10). We obtain formula (4) for cn which coincides with
Fourier formula:

cn =
(f, φn)

(φn, φn)
=

1

2π

∫ π

−π
f(x)e−inxdx.
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So Fourier expansion is similar to expansion of a vector in an orthogonal
system.

There is one important difference: a linear combination in linear algebra
is by definition a finite sum, while Fourier expansion is in general infinite.
The reason is that spaces of functions are infinite dimensional. It is true
that every vector space has a basis, so that each vector is a finite linear
combination of the basis vectors, but such a basis is so enormous that it is
useless in most infinite-dimensional spaces.

Example: the space of all polynomials has a basis consisting of all powers
of x. But the space of all continuous functions has no useful basis.

Instead of a basis we will use a generalization which is called a complete
orthogonal system. An orthogonal system (φn) is called complete in a space
V with a Hermitian product, if for every vector f in V :

(f, φn) = 0 for all n implies f = 0. (11)

In other words, there is no vector orthogonal to every vector of our system,
except the zero vector. In a finite-dimensional space, this is equivalent to the
definition of an orthogonal basis.

The main property of complete systems is that every vector f can be
expanded in an (infinite) series

f =
∑
n

cnφn, (12)

and this expansion is unique, and the coefficients are given by “Fourier for-
mulas”

cn = (f, φn)/(φn, φn).

Convergence of the series means by definition that∥∥∥∥∥x−
n∑
k=0

ckφk

∥∥∥∥∥
2

→ 0 as n→∞, (13)

where the norm ‖.‖2 is defined using the Hermitian product.
Convergence of any sequence fn → f means that ‖f − fn‖2 → 0 as

n→∞. For the standard dot product (7) this is called L2-convergence.
Notice an important fact: applying the Pythagorean theorem to the ex-

pansion (12) to we obtain∑
n

|cn|2(φn, φn) = ‖f‖2.

6



In particular, for the system φn(x) = enx, this means

(2π)
∞∑

n=−∞
|cn|2 = ‖f‖2 =

∫ b

a
|f(x)|2dx. (14)

This is called the Parseval identity. It implies that the sequence of Fourier
coefficients of a function of the space L2 (example d)) belongs to the space
`2 defined in example e) above.

In general, one can consider several types of convergence for functions.
The most important types for us are:

a) Pointwise convergence: we say fn → f pointvise, if fn(x) → f(x) for
every x from the common domain of definition. This type of convergence
is not convenient, mainly because convergence of functions does not imply
convergence of integrals.

Example: functions fn(x) = (n + 1)xn converge to zero on (0, 1), as
n→∞, but their integrals∫ 1

0
fn(x)dx =

∫ 1

0
(n+ 1)xndx = 1

do not converge to 0 as n→∞.

b) Uniform convergence: we say that fn → f uniformly on X if

sup
x∈X
|fn(x)− f(x)| → 0, n→∞.

With this type of convergence one can pass to the limit under the integral
sign. But this type of convergence is too restrictive for Fourier analysis.
The main reason is that uniform limit of continuous functions is continuous.
So there is no hope for uniform convergence of Fourier expansion even for
simplest discontinuous functions, like step functions, which are useful both
in theory and in the applications.

c) L2-convergence we discussed above. This is very convenient for Fourier
analysis, except for one difficulty which we address now.

3. Space L2. One has to define correctly the space of functions we deal with.
Our first requirement is that integrals in the definitions of the dot product
and the of the norm must exist. Second requirement is that implication (11)
must hold. On the other hand, we do not want to exclude discontinuous
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functions. Moreover, we want the L2 limits of functions of our space to
belong to our space.

There are two ways to define the space with required properties. Both
are somewhat abstract, and require a generalization of the very notion of
“function”.

a) Consider all functions on a given interval I (which can be finite or infinite)
with the property that ∫

I
|f(x)|2dx <∞.

Then the dot product is well-defined in view of inequality (9). To deal with
(11), we define small sets which do not influence integrals. We say that a set
E ⊂ I is negligible if for every δ > 0 it can be covered by a sequence of open
intervals of lengths δj > 0, such that

∞∑
j=0

δj < δ.

Intuitive meaning: such sets E have zero length; they can be covered by
intervals whose sum of lengths is arbitrarily small. For example, every finite
set is negligible, and every countable set is negligible. For example, the set
of all rational numbers is negligible. There are also uncountable negligible
sets.

Then we identify any two functions f and g which differ on a negligible
set. We say in this case that f(x) = g(x) almost everywhere. Then it is true
that f ≥ 0 and ∫

f(x)dx = 0

imply that f(x) = 0 almost everywhere. Then our space L2 consists not of
functions themselves but of classes of functions, where functions belong to
the same class if they coincide almost everywhere.

For example, the Dirichlet’s function which equals 1 at all rational points
and 0 at all irrational points is identified with the zero function, and repre-
sents the zero vector of the space L2.

This generalization of the notion of function seems very natural from the
point of view of engineers and physicists: we really never measure a value
of a function at a point. Every measuring device only measures an average
value at nearby points.
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So a value of a function at a point really makes sense only for continuous
functions when these averages tend to the value at a point when we average
over smaller and smaller intervals.

This definitions also requires a generalization of the notion of integral. In-
deed, the integral in the sense of Riemann (which is taught in undergraduate
courses) does not exist for such functions as Dirichlet’s function. The re-
quired generalization is called Lebesgue’s integral. Lebesgue’s integral “does
not feel” any change of the function on a negligible set.

b) The second method is using the procedure of completion. To explain what
is this, we first consider how real numbers are defined.

Suppose we begin with rational numbers. We want to define real num-
bers as limits of rational numbers. To each convergent sequence of rational
numbers we want to put into correspondence a new object and call it a real
number. But how can we say that a sequence is convergent, without men-
tioning its limit? (Which is not defined yet).

A way to do this was found by Cauchy. Let (an) be a sequence. It is
called a Cauchy sequence if |am − an| → 0 when m,n→∞. More precisely:
for every ε > 0 there exists N such that whenever m > N and n > N we
have |am − an| < ε.

Two Cauchy sequences (an) and (bn) are called equivalent if |an−bn| → 0.
Now real numbers are defined simply as classes of equivalent Cauchy

sequences. In other words, each Cauchy sequence is declared to define a
real number. And two equivalent Cauchy sequences define the same real
number. This is the definition of real numbers, proposed by Cantor. With
this definition, one has to explain what the sum and products of real numbers
are, and also the limit of sequences of real numbers. All this can be done in
terms of Cauchy sequences.

One can make a similar definition of the space L2 on a given interval I.
We start with continuous functions. If the interval I is infinite we also assume
that our functions have bounded support, that is each of them is different
from 0 only on a bounded interval. Then we define the distance between two
functions as

‖f − g‖2 =

√∫
I
|f(x)− g(x)|2dx.

Since our functions are continuous and different from zero only on a finite
interval, this definition makes sense, even with the ordinary (Riemann’s)
definition of integral. Once we have a distance, we define Cauchy sequences
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exactly as above: a sequence (fn) of functions is Cauchy if ‖fm − fn‖2 → 0
as m,n→∞. And two Cauchy sequences are equivalent if ‖fn − gn‖2 → 0.

Then the elements of L2(I) are defined as equivalence classes of Cauchy
sequences. Again, addition and multiplication of elements of L2 is defined
using Cauchy sequences, and one verifies that we obtain a vector space. Then
the integral of an element of L2 is defined as the limit of integrals of fn for
some sequence (fn) representing our element, and one shows that formula
(7) defines a genuine dot product.

The crucial property of these completion spaces is completeness: every
Cauchy sequence converges to an element of the space.

Examples. f(x) = |x|α belongs to L2(−1, 1) when α > −1/2 and does not
belong when α ≤ −1/2. Same about L2(0, 1).

The function given by the same formula belongs to L2(1,∞) if and only
if α < −1/2.

So the function defined by this formula never belongs to L2(0,+∞) or to
L2(−∞,∞).

Function (sinx)/x belongs to L2(−∞,∞). (And it does not matter how
you define it at x = 0.)

The space L2 permits to give a very satisfactory statement of Fourier
correspondence.

Theorem of Riesz and Fisher For every f ∈ L2(−π, π) the sequence

cn =
∫ π

−π
f(x)e−inxdx, −∞ < n <∞

is defined, and belongs to `2 that is (6) holds. Conversely, for every sequence
(cn) ∈ `2, the series

∞∑
n=−∞

cne
int

converges in L2 sense, and these two formulas define a 1-to-1 correspondence
between L2(−π, π) and `2. Moreover, this correspondence respects the norms
(up to multiple 2π): ∫ π

−π
|f(x)|2dx = 2π

∞∑
−∞
|cn|2.

The last equality is called the Parseval identity. It says that Fourier trans-
form respects distances (up to the factor 2π), and this also implies that it
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respects the dot product, and the angles between vectors. (The angle be-
tween vectors f and g is defined as the unique number in α ∈ [0, 1] such
that

cosα =
(f, g)

‖f‖‖g‖
.

Such α exists in view of Cauchy–Schwarz inequality.
When Fourier coefficients and ‖f‖ can be explicitly computed, we obtain

from Parsevals’s identity many interesting explicit sums of various series, like
in the exercises on p. 37 of the book.

3. What are the properties of the system (einx)∞−∞ and of the interval (−π, π)
which imply the Riesz–Fisher theorem? How to generalize it to other intervals
and other systems of functions.

Let us go back to Linear Algebra. A basis in a vector space is a system of
vectors which is linearly independent and spans the space. Every orthogonal
system (of non-zero vectors) is linearly independent. How to check that an
orthogonal system spans the space? One simple way is to check that there is
no vector, other than zero vector which is orthogonal to each vector of our
orthogonal system.

It turns out that this last property generalizes to our infinite expansions.

Definition. A system of vectors φn in L2(I) is called complete if for every
f ∈ L2(I) equations (f, φn) = 0 for all n imply that f = 0.

In other words, an orthogonal system is complete if only zero vector is
orthogonal to all vectors of this system.

A vector space V with a dot product is called a Hilbert space if it is
complete (=every Cauchy sequence has a limit).

Let φn be any orthogonal system (complete or not) in a Hilbert space V .
Then for every f ∈ V we can define Fourier coefficients,

cn =
(f, φn)

(φn, φn)
.

We always have Bessel’s inequality:∑
n

|cn|2(φn, φn) ≤ ‖f‖2.

The system (φn) is complete if and only if for every f we have equality in
Bessel’s inequality, that is (14). And equivalently, if for every f Fourier
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expansion holds
f =

∑
n

cnφn.

Examples.

(i) System (einx)∞−∞ is complete in L2(−π, π).

(ii) System (1, cosnx, sinnx)∞n=1 is complete in the same space.

(iii) System (sinnx)∞1 is complete in L2(0, π).

(iv) System (cosnx)∞0 is complete in L2(0, π).

(v) System (cosnx)∞1 is not complete in L2(0, π). Indeed, function f(x) = 1
is orthogonal to all functions of this system. Its Fourier expansion with
respect to this system is just 0, so it does not converge to f .

Statements (iii) and (iv) follow from (ii) by the even or odd extensions
which were discussed earlier in this course.

In general if you have an orthogonal system (not containing zero func-
tions) and you remove any function from it, the resulting system cannot be
complete, since the removed function is orthogonal to all the rest.

For arbitrary complete system we have

Riesz and Fisher General theorem. Let (φn) be an complete orthogonal
system in L2 which contains no zero vector. Suppose that ‖φn‖ are all equal.
Then for every f ∈ L2 the sequence

cn =
(f, φn)

(φn, φn)
(15)

is defined, and belongs to `2 that is (6) holds. Conversely, for every sequence
(cn) ∈ `2, the series ∑

n

cnφn

converges in L2 sense, and these two formulas define a 1-to-1 correspondence
between L2 and `2. Moreover, this correspondence respects the norms:∫

|f(x)|2dx =
∑
n

|cn|2‖φn‖2.
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Sketch of the proof. For every n define

hn = f −
n∑
k=0

cnφn.

Multiplying on φk with k ≤ n we obtain

(hn, φk) = (f, φk)− cn(φk, φk) = 0,

where we used orthogonality of φk and (15). Thus hn is orthogonal to all φk
for k ≤ n. Now

f =
n∑
k=0

ckφk + hn,

and we obtain

‖f‖2 = (f, f) =

∑
k

ckφk + h,
∑
j

cnφj + h


∑
k,j

ckcj(φk, φj) +
∑
k

ck(φk, h) +
∑
j

cn(h, φj) + ‖hn‖2

By orthogonality, in the first sum only terms with j = k remain, and the
second and third sums are zero in view of orthogonality of hn to φk with
k ≤ n. So what remains is

‖f‖2 =
n∑
k=1

|ck|2‖φk‖2 + ‖hn‖2,

which implies ∑
k

|ck|2(φk, φk) ≤ ‖f‖2.

This is called Bessel’s inequality and it implies that the sequence (cn) belongs
to `2. Now for every sequence (cn) in `2, the series

∑
n cnφn and if we define

h = f −
∑
n

cnφn,

then h is orthogonal to all functions φn. Since this system of functions is
complete, h = 0, and the above computation of the norm gives the Parseval
equality

‖f‖2 =
∑
n

|cn|2‖φn‖2.

13


