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Abstract

It is well known that, in the plane, the boundary of any quadrature
domain (in the classical sense) coincides with the zero set of a poly-
nomial. We show, by explicitly constructing some four-dimensional
examples, that this is not always the case. This confirms, in dimen-
sion 4, a conjecture of the second author. Our method is based on
the Schwarz potential and involves elliptic integrals of the third kind.
MSC 2010: 31B05, 30E20.
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1 Introduction

A bounded domain Ω ⊂ C is a quadrature domain (in the classical sense) if it
admits a formula expressing the area integral of any function f analytic and
integrable in Ω as a finite sum of weighted point evaluations of the function
and its derivatives. i.e.∫

Ω

fdA =
N∑
m=1

nm∑
k=0

am,kf
(k)(zm), (1.1)

where zm are distinct points in Ω and am,k are constants (possibly complex)
independent of f .

Note: This can be generalized in various directions. One may use a
different class of test functions, integrate with respect to a weighted density
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(or over the boundary), or allow for more general distributions in the right
hand side. “Quadrature domain in the classical sense” is used to specify the
restricted case we consider throughout this paper.

Suppose that Ω is a bounded simply-connected domain in the plane with
non-singular analytic boundary. Then the following are equivalent. More-
over, there are simple formulas relating the details of each.

(i) Ω is a quadrature domain.
(ii) The Schwarz function of ∂Ω is meromorphic in Ω.
(iii) The conformal map from the disk to Ω is rational.

For their equivalence see [2, Ch. 14].
In higher dimensions, quadrature domains are defined by replacing ana-

lytic functions with harmonic functions. We write the quadrature formula
using multi-index notation with α = (α1, α2, .., αn) consisting of nonnegative

integers, |α| = α1 +α2 +..+αn, and ∂αu =
∂|α|u

∂α1
x1 ∂

α2
x2 ..∂αn

xn

. Then, Ω is a quadra-

ture domain if it admits a quadrature formula for integration of harmonic
functions u, ∫

Ω

udV =
N∑
m=1

nm∑
|α|=0

am,α∂αu(xm), (1.2)

where x1,x2, ..,xN are points in Ω and am,α are now real constants.
Remark: In R2, any quadrature domain for harmonic functions is a

quadrature domain for analytic functions, but not vice-versa. See [9, Ex-
ample 1] for an example of a quadrature domain for analytic functions that
is not a quadrature domain for harmonic functions.

For the case of n ≥ 3 dimensions, condition (ii) has a counterpart for-
mulated in terms of the Schwarz potential, introduced by D. Khavinson and
H. S. Shapiro (see Section 2). As a consequence of Liouville’s Theorem on
the rigidity of conformal maps [3], condition (iii) does not extend to higher
dimensions. Throughout this paper, we will make use of the reformulation of
quadrature domains in terms of the Schwarz potential discussed in Section
2.

Regarding the existence, in the case when there are no derivatives ap-
pearing in the quadrature formula (1.2) and am,0 > 0, the free-boundary
problem of obtaining a quadrature domain satisfying the prescribed quadra-
ture formula can be reformulated as a so-called obstacle problem, and the
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existence of a solution is proved using variational inequalities [7] (but the
“quadrature domain” constructed may not be connected). The case when
the quadrature formula (1.2) involves derivatives but is supported at only
one point is especially relevant to the present paper. In that case, existence
requires that a1,0 > 0 and that the other a1,α are small in comparison (see
Section 3). In each of these cases, the existence theorems are true in any
number of dimensions.

In the plane, quadrature domains can be constructed explicitly. The only
explicit examples in higher dimensions are a sphere in Rn and some special
examples in R4 discovered by L. Karp [12] (and independently by P. I. Etingof
[21, p. 70]).

The current investigation is motivated by the lack of explicit examples in
the higher-dimensional case and the lack of qualitative understanding. We
address the question Are quadrature domains algebraic in Rn, with n ≥ 3?
which was raised by H. S. Shapiro [19] (p. 40) and posed again as an open
problem by B. Gustafsson [4] (p. xv).

As usual, by “algebraic domain” we mean that the boundary of the do-
main is contained in the zero-set of a polynomial. We note that in some
literature, starting with [21], “algebraic domain” is used in a more restricted
sense to refer to a (classical) quadrature domain in two dimensions.

In the plane, under no regularity assumptions on ∂Ω, it was shown by
D. Aharanov and H. S. Shapiro (1976) that quadrature domains are always
algebraic. B. Gustafsson (1983) showed that they have further nice properties
[8] which we summarize in the following.

Theorem 1.1 (B. Gustafsson, 1983). If Ω ⊂ R2 is a quadrature domain,
then Ω is algebraic. Moreover, for some polynomial P (x, y), the boundary ∂Ω
consists of all of the points of {P (x, y) = 0} except finitely many. Moreover,
the leading order (homogeneous) term in P is a constant times (X2+Y 2)M for
some M . Moreover, there are some explicit relations between the coefficients
of P and the coefficients am,k in the quadrature identity.

By the remark above, this applies as well to quadrature domains for
harmonic functions in the plane, so it makes sense to ask if any part of the
theorem extends to Rn. Considering that the examples in R4 constructed
by L. Karp [12] were algebraic, one might hope that the answer is “yes”.
We show that in fact quadrature domains are not always algebraic, thus
confirming the following Conjecture [15] in n = 4 dimensions.
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Conjecture 1.1. In all dimensions greater than two, there exist quadrature
domains that are not algebraic.

Our answer is based on constructing explicit examples in Section 3. In
Section 4 we use these same examples to generate some exact solutions to
the Laplacian growth problem.

First, we review the definition of the Schwarz Potential in the next section.

2 The Schwarz Potential

Suppose that Γ is a non-singular, real-analytic curve in the plane. Then the
Schwarz function S(ζ) is the function that is complex-analytic in a neigh-
borhood of Γ and coincides with ζ̄ on Γ (see [2] for a full exposition). If Γ
is given algebraically as the zero set of a polynomial P (x, y), by the implicit
function theorem we can obtain S(ζ) by making the complex-linear change
of variables ζ = x + iy, ζ̄ = x − iy, and then solving for ζ̄ in the equation

P

(
ζ + ζ̄

2
,
ζ − ζ̄

2i

)
= 0 (See [19, p. 3]). On the other hand, S(ζ) can also be

written in terms of the conformal map f from the unit disk to the domain,
using the formula

S(ζ) = f ∗
(

1

f−1(ζ)

)
, (2.1)

where f ∗ denotes the function obtained by conjugating the coefficients of f .
In the next section, we will utilize both such representations of S(ζ), so

let us illustrate each by an example.
Example (“C. Neumann’s oval”): Let a > 0 be a real parameter. Sup-

pose that Γ is the Jordan curve defined by

(x2 + y2)2 = a2(x2 + y2) + 4x2.

See Figure (1), for a plot of Γ for different values of a > 0.
Changing the variables we have (ζζ̄)2 = a2(ζζ̄) + (ζ + ζ̄)2. Solving for ζ̄

gives

S(ζ) =
ζ(a2 + 2) + 2ζ

√
a4 + a2 + ζ2

2(ζ2 − 1)
,

indicating that Γ is the boundary of a quadrature domain since S(ζ) is mero-
morphic in the interior with only poles at ζ = ±1.
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Figure 1: A plot of Γ for different values of a > 0.

Let us make the same observation using the formula (2.1). The conformal
map from D to the interior of Γ is given by

f(z) =
(R4 − 1)z

R(R2 − z2)
,

where R =
a+
√
a2 + 4

2
> 1. Without actually calculating the inverse of f ,

but just observing that it is a conformal map from the interior of Γ to D,

we can see that S(ζ) = f ∗
(

1

f−1(ζ)

)
is meromorphic in the interior of Γ and

has two simple poles at f(±1/R) = ±1.
Suppose that Γ is more generally a nonsingular analytic hypersurface in

Rn, and consider the following Cauchy problem posed near Γ. The solution
exists in some neighborhood of Γ and is unique by the Cauchy-Kovalevskaya
Theorem. 

∆w = 0 near Γ
w|Γ = 1

2
||x||2

∇w|Γ = x
(2.2)

Definition. The solution w(x) of Cauchy problem 2.2 is called the Schwarz
Potential of Γ.

In R2, the Schwarz function can be directly recovered from the Schwarz
potential. Consider S(ζ) = 2∂ζw = wx − iwy. The Cauchy-Riemann equa-
tions for S follow from harmonicity of w, and ∇w = x on Γ implies S(ζ) = ζ̄
on Γ.
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As mentioned in the introduction, quadrature domains have an equiva-
lent definition framed in terms of the Schwarz potential. Namely, the follow-
ing theorem shows that condition (ii) in the introduction has a counterpart
in higher dimensions, where instead of “meromorphic”, we have that the
Schwarz potential has a single-valued real-analytic continuation throughout
Ω except for finitely many points, where ∆w is a distribution of finite order.

Theorem 2.1 (Khavinson, Shapiro, 1989). Suppose that Ω is a connected
domain in Rn with C1 boundary. Then Ω is a quadrature domain with quadra-
ture formula (1.2) if and only if the Schwarz potential of ∂Ω satisfies

w(x) = n (H(x)−Q(x)) , (2.3)

where H(x) is harmonic in Ω and C1 in Ω, and Q(x) is the result of applying
the quadrature formula (1.2) to the fundamental solution En(x,y) = cn||x−
y||2−n (in its second argument).

Example: Let Γ := {x ∈ Rn : ||x||2 = r2} be a sphere of radius r. When
n = 2, it is easy to verify that

w(ζ) = r2 (log |ζ|+ 1/2− log(r))

solves the Cauchy Problem (2.2), and in higher dimensions the Schwarz po-
tential is

w(x) =
n

2(n− 2)
r2 − rn

(n− 2)||x||n−2
.

Let us check that this agrees with Theorem 2.1. The mean-value property
for the ball of radius r about zero, Br(0), gives the quadrature formula:∫

Br(0)

udV = Vol (Br)u(0).

Applying this quadrature formula to En(x,y) in its second argument gives

Q(x) = Vol(Br)En(x) = Vol(Br)cn||x||2−n = rnVol(B1)cn||x||2−n

=
rn

n(n− 2)
||x||2−n,

since the constant cn appearing in the fundamental solution is
1

(n− 2)ωn
,

where ωn is the surface area of the unit sphere. Taking H(x) =
n

2(n− 2)
r2,

we obtain the same formula (2.3).
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3 An example of a non-algebraic quadrature

domain

A simple case of particular interest is when the quadrature formula (1.2) is
supported at a single point.∫

Ω

udV =
M∑
|α|=0

aα∂αu(0), (3.1)

where α = (α1, α2, .., αn) again is a multi-index.
This quadrature formula corresponds to a domain that has only finitely

many non-vanishing harmonic moments. In two dimensions, this is equivalent
to the conformal map from the disk being a polynomial.

Under the condition that the leading coefficient a(0,0,..,0) > 0 and the other
coefficients aα for |α| > 0 are small in comparison, the existence and unique-
ness of domains admitting a quadrature formula of the type (3.1) follows from
one of the earliest results on the solvability of the inverse potential problem
[20] (cf. [11]).

Let us further specialize to the case when all derivatives in the quadrature
formula (3.1) are with respect to the same variable, say x1.∫

Ω

udV =
m∑
k=0

ak
∂ku

∂xk1
(0). (3.2)

In [12], special cases were explicitly generated by rotating the limacon
D := {ζ : ζ = w + σw2, |w| < 1} about the x-axis, where σ > 1/2 is a real
parameter. Before rotation, this starts out as a two-dimensional quadrature
domain with quadrature formula∫

D

f(ζ)dA = π[(1 + 2σ2)f(0) + σf ′(0)].

The four-dimensional domain generated by rotation is a quadrature do-
main with quadrature formula∫

Ω

udV = π2

[
(1 + 6σ2 + 2σ4)

2
u(0) +

σ(1 + 2σ2)

2

∂u

∂x1

(0) +
σ2

12

∂2u

∂x2
1

(0)

]
.

where x1 corresponds to the axis of symmetry.
We prove Conjecture 1.1 in R4 by constructing a domain admitting the

quadrature formula (3.2) with m = 1, a0 > 0, and a1 > 0.
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Theorem 3.1. In R4, there exist quadrature domains that are not algebraic,
namely, admitting the quadrature formula (3.2) with m = 1, a0 > 0, and
a1 > 0 (with a1 small in comparison with a0). Moreover, the boundary can
be described explicitly in terms of elliptic integrals of the third kind.

We will work in terms of the Schwarz potential introduced in the previous
section. Before beginning the proof we make an observation regarding axially
symmetric potentials.

Recall the axially symmetric reduction of Laplace’s equation:
Suppose that u(x1, x2, ..., xn) is harmonic in Rn and axially symmetric

about the x1-axis. Write U(x, y) = u(x1, x2, ..., xn), where x = x1 and y =√
x2

2 + ...+ x2
n. Then,

∆U +
n− 2

y
Uy = 0.

Indeed, ∆u = div (Ux, Uyyx2 , Uyyx3 , ..., Uyyxn)

= Uxx + Uyy

(
n∑
i=2

y2
xi

)
+ Uy

(
n∑
i=2

yxixi

)
,

where easy calculations give
∑n

i=2 y
2
xi

= 1 and
n∑
i=2

yxixi =
n− 2

y
.

In the case n = 4, U satisfies the equation ∆U +
2Uy
y

= 0, iff yU(x, y) is

a harmonic function of two variables. Indeed,

∆(yU) = y∆U + 2∇U · ∇y + U∆y = y∆U + 2Uy.

This fact about axially symmetric potentials in R4 was used in [13] and [12]
where it is explained in more detail.

If Ω is a domain in R4 with axially symmetry, then the above consider-
ations apply to the Schwarz potential, since the rotational-symmetry of the
Cauchy data (2.2) is passed to the solution w.

Thus, the Cauchy problem (2.2) defining the Schwarz potential w(x) is
reduced to the following two-dimensional Cauchy problem for the axially
symmetric reduction W (x, y) of w(x1, x2, x3, x4):

∆W +
2Wy

y
= 0, near γ

W |γ =
1

2
(x2 + y2)

∇W |γ = 〈x, y〉

(3.3)
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where γ is the symmetric curve in the plane whose rotation generates the
boundary of Ω, and 〈x, y〉 denotes the vector with components x and y.

According to the previous observation, we have

∆ (yW (x, y)) = 0, (3.4)

which will be used below.

Proof of Theorem 3.1. We will construct Ω by first describing a conformal
map f : D→ Dp from the unit disk D to a domain Dp in the plane symmetric
with respect to the real axis. Then we will take Ω to be the domain generated
by rotation of Dp into R4 about the x-axis. i.e., (x1, x2, x3, x4) ∈ Ω if and only

if
(
x1,
√
x2

2 + x2
3 + x2

4

)
∈ Dp. Notice that the boundary Γ = ∂Ω is algebraic

if and only if γ = ∂Dp is algebraic, in which case γ = {ρ(x, y) = 0}, and

Γ =
{
ρ
(
x1,
√
x2

2 + x2
3 + x2

4

)
= 0
}

, where ρ(x, y) is a polynomial that is even

in the variable y.
The conformal map f and its relevant properties will be established in

the proofs of the following claims.
Claim 1: There exists a function f with real coefficients, analytic and uni-
valent in a neighborhood of D, with f(0) = 0, so that the function(

f(z)− f
(

1

z

))2

= g(z) (3.5)

is rational, and its only pole in D is a pole of exact order 3 at z = 0.
Claim 2: The (analytically continued) function f has an infinitely-sheeted
Riemann surface.

We defer the proofs of the claims in favor of first seeing how they are used
to prove the theorem.

Since, by Claim 1, D = f(D) is the image of D under a univalent function
analytic in a neighborhood of D, the boundary of Dp, and therefore of Ω, is
analytic and non-singular. Thus ∂Ω has a Schwarz potential w(x1, x2, x3, x4),
which by axial symmetry can be reduced to a function W (x, y) of two vari-
ables (see the discussion above just before the proof). As stated in (3.4),
yW (x, y) is harmonic near ∂Dp.

Let ζ = x+ iy. Then the function

V (x, y) = yW (x, y)−={ζ3}/6,
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is harmonic (subtracting the harmonic term ={ζ3}/6 simplifies the following
calculations without changing the singularities of V ).

Next, consider the (complex-analytic) function obtained by taking the
ζ-derivative Vζ = 1

2
(Vx − iVy).

Vζ =
−i
2
W + yWζ +

iζ2

4

The Cauchy data for W , stated in (3.3), can be written W = ζζ̄/2 and
Wζ = ζ̄/2, so that on the boundary γ = ∂Dp, the equation above gives

Vζ |γ = −iζζ̄
4

+
ζ − ζ̄

4i
· ζ̄ +

iζ2

4
=
i

4

(
ζ − ζ̄

)2
,

where we have also used y =
ζ − ζ̄

2i
.

Now we replace ζ̄ with S(ζ) the Schwarz function of γ. Then, both sides
of the equation are analytic in a neighborhood of γ, and thus the following
becomes an identity (not just valid on the boundary).

Vζ =
i

4
(ζ − S(ζ))2 . (3.6)

This relates the four-dimensional Schwarz potential to the two-dimensional
Schwarz function.

As follows from (2.1) when the coefficients of f are real, the Schwarz
function of γ satisfies the functional equation

S(f(z)) = f

(
1

z

)
.

Using this relationship, and substituting ζ = f(z) into (3.6), we get

Vζ(f(z)) =
i

4

(
f(z)− f

(
1

z

))2

.

By Claim 1 the right hand side is g(z), a function analytic in a neighborhood

of D, except for a pole at z = 0 of order 3. So, g(z) =
Q(z)

z3
, with Q(z)

analytic in a neighborhood of D and Q(0) 6= 0.
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Since f(0) = 0 and f is univalent, we have f−1(ζ) = ζh(ζ), for some h(ζ)
analytic and non-vanishing in Dp. Thus,

Vζ(ζ) = g(f−1(ζ)) =
1

ζ3

Q(f−1(ζ))

h(ζ)3
,

which is analytic in Dp except for a pole of order 3 at ζ = 0. Moreover,
expanding about ζ = 0 we have, for some p(ζ) analytic in Dp and A > 0 and
B > 0,

Vζ(ζ) = −A i

ζ2
+B

i

ζ3
+ p(ζ), (3.7)

where the residue of Vζ is zero, as can be seen by integrating (3.6) over ∂Dp,
and noting that on this contour, with respect to reflection over the x-axis,
the integrand is even and the differential dζ is odd.

In order to recover W (x, y) we need to take the real part of a primitive
of (3.7) and divide by y (cf. [12, Lemma 2.3]). A primitive of (3.7) is

A
i

ζ
− B

2

i

ζ2
+ P (ζ), (3.8)

with P (ζ) analytic in Dp.
Notice that

<
{
i

ζ

}
=

y

x2 + y2
,

and

<
{
i

ζ2

}
= −y ∂

∂x

1

x2 + y2
.

This implies that (cf. [12, p. 183])

w(x1, x2, x3, x4) = w(x) = A · ||x||−2 +
B

2
· ∂x1(||x||−2) +H(x),

where H(x) is harmonic in Ω.
Since, up to a constant, ||x||−2 is the fundamental solution E4(x,0) eval-

uated at y = 0, Theorem 2.1 implies that Ω is a quadrature domain with
quadrature formula of the form∫

Ω

udV = a0u(0) + a1
∂u

∂x1

(0).
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Next we apply Claim 2 in order to show that the boundary of Ω is not
algebraic.

Note: It does not follow immediately from Claim 2 that the image of ∂D
is non-algebraic, since it is possible for an algebraic domain to be conformally
mapped from the unit disk by a transcendental function. Indeed, any non-
circular ellipse is such an example.

Suppose, to the contrary, that γ = ∂Dp is the zero set of a polynomial.
Then, as observed in Section 2, the Schwarz function S(ζ) is an algebraic
function, since it can be obtained by solving for ζ̄ in the equation

P

(
ζ + ζ̄

2
,
ζ − ζ̄

2i

)
= 0.

Substitute z = f−1(ζ) into (3.5) and use the formula (2.1)

S(ζ) = f

(
1

f−1(ζ)

)
,

where again, the conjugation is missing because the coefficients of f are real.
We obtain

g(f−1(ζ)) = (ζ − S(ζ))2.

Since g(z) is rational, and S(ζ) is algebraic, this implies

f−1(ζ) = g−1
(
(ζ − S(ζ))2

)
is also an algebraic function. This contradicts the fact that f−1(ζ) has an
analytic continuation to an infinitely sheeted Riemann surface. We conclude
that S(ζ) is not an algebraic function, and so the boundary of Ω is not
contained in the zero set of a polynomial.

It remains to prove the claims.

Proof of Claim 1. With 0 < a < 1 a real parameter, let

h(z) =
z2 − 1

z

√
z + a

z
(1 + az).

It is easy to see that the square root above has two single valued analytic
branches on |z| = 1. We choose that branch which is > 0 at z = 1.
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We observe that
h(1/z) = −h(z). (3.9)

Since h(z) is analytic in a neighborhood of ∂D, say {1− ε < |z| < 1 + ε}
it has a Laurent expansion

h(z) =
∞∑

j=−∞

cjz
j.

Let f(z) =
∑∞

j=1 cjz
j. By (3.9), cj = −c−j.

Therefore,

h(z) = f(z)− f
(

1

z

)
, (3.10)

where f(z) is analytic in a neighborhood of D, and f(1/z) is analytic in a
neighborhood of C \ D with f(1/z)→ 0 as z →∞.

Observe that f(z) satisfies (3.5) if we take

g(z) = h(z)2 =
(z2 − 1)2(z + a)(1 + az)

z3
.

We remark that, up to multiplication by a constant (resulting in a dilation of
the domain) and changing the sign of the parameter a (resulting in a reflection
of the domain), this is the only choice of g for which all the conditions in the
claim can be satisfied.

Since f contains exactly the terms with positive powers in the Laurent
expansion of h, it follows that for w ∈ D, f(w) can be expressed as the
contour integral

f(w) =
1

2πi

∫
|z|=1

h(z)

z − w
dz.

So we have

f(w) =
1

2πi

∫
|z|=1

(z2 − 1)
√

(1 + a
z
)(1 + az)

z(z − w)
dz. (3.11)

Next, we show that f(w) is univalent at least for sufficiently small values
of the parameter 0 < a < 1.

Use (3.11) to write the derivative f ′(w):

f ′(w) =
−1

2πi

∫
|z|=1+ε

(z2 − 1)
√

(1 + a
z
)(1 + az)

z(z − w)2
dz,
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where we have also deformed the contour slightly with ε > 0. As a→ 0, the

integrand converges (uniformly for |z| = 1 + ε) to
(z2 − 1)

z(z − w)2
. Thus, f ′(w)

converges uniformly in D to

1

2πi

∫
|z|=1+ε

z

(z − w)2
− 1

z(z − w)2
dz = 1,

using residues.
This guarantees univalence of f(w) throughout D for all sufficiently small

a > 0. Indeed, for any two points w1 and w2 in D,

f(w2)− f(w1) =

∫ w2

w1

f ′(w)dw,

and f ′(w) is uniformly close to 1 for a > 0 sufficiently small.

Proof of Claim 2. We investigate the global analytic function whose princi-
pal branch is given by the integral (3.11).

We will deform the contour in (3.11), but first we manipulate the inte-
grand so that the new integral will converge. Using

(z2 − 1)

z(z − w)
= 1 +

w

z
+

w2 − 1

z(z − w)
,

we have
f(w) = A0 + A1w + (w2 − 1)F (w),

where A0 and A1 are integrals that do not depend on w, and

F (w) =
1

2πi

∫
|z|=1

√
(1 + a

z
)(1 + az)

z(z − w)
dz. (3.12)

Now deform the contour until it it “just surrounds” the segment (−∞,−1/a].
The integrand changes sign as it switches sides, and the path changes direc-
tion. Thus, we obtain twice the integration along a segment:

F (w) =
1

πi

∫ −1/a

−∞

√
(1 + a

z
)(1 + az)

z(z − w)
dz =

1

πi

∫ −1/a

−∞

√
G(z)

(z − w)
dz, (3.13)
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where G(z) = (1+ a
z
)(1
z
+a)1

z
. By further manipulation, this can be expressed

in terms of a standard form of a complete elliptic integral of the third kind,
which we will do at the end of this section after the proof. For now, we show
directly from (3.13) that the analytic continuation of F (w), and hence f(w),
has an infinitely-sheeted Riemann surface.

The monodromy for F (w) can be obtained as a nice exercise in applying
the Sokhotski-Plemelj relation [10, Ch. 14]. Accordingly, the jump across
the segment (−∞,−1/a] of such an integral as appears in (3.13) is equal to
2πi times the numerator of the integrand. i.e., let w approach a point x on
the segment (−∞,−1/a] from above and below, respectively, then

F (x+)− F (x−) = −2
√
G(x). (3.14)

In order to perform analytic continuation, choose a base point w0, say
in the upper half-plane, and let F0(w) denote the principal branch (which is
expressed by the integral itself). Then, let γ1 be a loop based at w0 that winds
once around 1/a. According to (3.14), performing analytic continuation along
γ1, we obtain a new branch F1(w) = F0(w) + 2

√
G(w). If γ1 is traced again,

then we return to the original branch since 2
√
G(w) switches sign and cancels

the contribution from F0. So w = 1/a only has ramification index 2.
Consider a second loop γ2 based at w0 that winds around the origin,

crossing the segment [0, a]. Traveling along this loop does nothing to the
initial branch F0, but if we first continue along γ1, then the branch F1 will
be affected when we continue along γ2. Alternate between these two loops
and perform analytic continuation along γ1 · γ2 · γ1 · · · γ1, where γ1 is traced
k + 1 times. Let Fi(w) denote the new branch obtained at each step. Then
we have

F1(w) = F0(w) + 2
√
G(z)

F2(w) = F0(w)− 2
√
G(z)

F3(w) = F0(w) + 2
√
G(z) + 2

√
G(z)

F4(w) = F0(w)− 4
√
G(z)

F5(w) = F0(w) + 2
√
G(z) + 4

√
G(z)

F2k+1(w) = F0(w) + 2(k + 1)
√
G(z)

Thus, the Riemann surface for F (w) is infinitely-sheeted.
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Reduction of the integral to a standard form: Let us make f(w)
more explicit by reducing F (w) to a standard form. Make the substitution
z = −1

ξ
, dz = dξ

ξ2
, in (3.13) to get

F (w) =
1

πi

∫ a

0

√
(1− aξ)(1− a/ξ)

(1 + ξw)
dξ =

1

πi

∫ a

0

√
(1− aξ)(ξ − a)ξ

ξ(1 + ξw)
dξ.

Using 1
ξ(1+ξw)

= 1
ξ
− w

1+ξw
,

F (w) = C0 +

√
a

π

∫ a

0

√
(ξ − 1/a)(ξ − a)ξ

(ξ + 1/w)
dξ,

where C0 is an integral that doesn’t depend on w.
For the remaining integral we write∫ a

0

√
(ξ−1/a)(ξ−a)ξ

(ξ+1/w)
dξ = (ξ − 1/a)(ξ − a)ξ

∫ a
0

1

(ξ+1/w)
√

(ξ−1/a)(ξ−a)ξ
dξ.

This integral on the right hand side is entry 4 from section 3.137 of [6],
where it is expressed in terms of a complete elliptic integral of the third kind.
The argument w appears only within the so-called elliptic characteristic.

4 Laplacian growth in Rn

Given an initial domain Ω0, consider the following moving-boundary problem.
Find a one-parameter family of domains, {Ωt} ⊂ Rn so that the normal
velocity, vn, of the boundary Γt := ∂Ωt is determined by the normal derivative
of Green’s function, P (x, t), of Ωt with a fixed singularity positioned at x0 ∈
Ωt. 

vn|Γt = −∂nP
∆P = Qδx0 , in Ωt

P |Γt = 0
(4.1)

where Q > 0 (Q < 0) determines the suction (injection) rate at the sink
(source) x0.

If the domains Ωt are bounded as in the case considered below, with
Q > 0 problem (4.1) actually produces a shrinking boundary. We get a
growth process if Ωt contains infinity so P then solves an exterior Dirichlet
problem. In such a situation, it is common to place the sink at infinity
by prescribing asymptotics for ∇P so that the flux across neighborhoods of
infinity is proportional to Q.
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This is a non-linear moving boundary problem that models viscous fin-
gering in a Hele-Shaw cell (when n = 2) or bubble growth in a porous media
(when n = 3). These processes exhibit complicated pattern formation [16],
yet miraculously, there turns out to be an abundance of explicit, exact solu-
tions in the plane. This miracle is partly explained by Richardson’s Theorem
[18], which guarantees that the property of Ω being a quadrature domain is
preserved under Laplacian growth, and moreover the time-evolution of the
quadrature formula is simple.

Theorem 4.1 (S. Richardson). If Ωt solves Problem (4.1), then for any
harmonic function u

d

dt

∫
Ωt

udV = Qu(x0).

Given the many equivalent definitions of quadrature domains a few of
which were mentioned in the introduction, it is not surprising that there are
alternative statements of Richardson’s Theorem. For instance, applying the
theorem to a basis of harmonic polynomials expanded about the point x0, we
obtain that all harmonic moments are constant except one (infinitely-many
conservation laws). One may ask if there is a moment-generating function for
the harmonic moments. The answer is that it is precisely the exterior grav-
itational potential of Ωt, which according to Richardson’s Theorem evolves
by inheriting the effect due to a single additional point-mass at x0 growing
linearly in strength.

Yet another interpretation is relevant to the approach taken in the above
sections. Namely, all singularities of the Schwarz potential are stationary ex-
cept one positioned at x0 which does not move but simply grows in strength.
This is a consequence of Richardson’s Theorem combined with Theorem 2.1.
It can be seen more directly by establishing the following formula, shown in
[15] from elementary calculations, relating the Schwarz potential w to the
pressure P .

∂

∂t
w(x, t) = −nP (x, t), (4.2)

where n is the spatial dimension.
In the statement of the problem (4.1), if we allow P to have more exotic

singularities, then the quadrature domains constructed in [12] provide exact
solutions in R4 with a dipole flow superimposed on a source of varying rate.
Some exact solutions without multipole flows were described in [15], but they
required a combination of sources and sinks. The examples constructed in
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Section 3 provide exact solutions to the Problem (4.1) as stated (i.e. with
a single sink). Before describing the solution, we review its analogue in the
plane, which is the well-known example (due to Polubarinova-Kochina [17])
that encounters a cardioid.

Example 1 (R2): Consider the family of domains D with boundary given
by the curves {ζ : ζ = az2+bz, |w| < 1} with a > 0, b > 2a real. The Schwarz
function is given by S(ζ) = −2ab/(a −

√
a2 + 4bζ) + 4b3/(a −

√
a2 + 4bζ)2

which has a single-valued branch in the interior of the curve for appropriate
parameter values a and b. The only singularities of the Schwarz function inte-
rior to the curve are a simple pole and a pole of order two at the origin. Since
S(ζ) = 2∂ζw(x, y, t), Equation (4.2) becomes ∂

∂t
S(ζ, t) = −4∂ζP (x, y, t). So,

in order for a one-parameter family of domains to solve Problem (4.1), the
singularities of S(ζ) must be time-independent except for one simple pole.
Given an initial domain from this family we can choose a one-parameter slice
of domains so that the simple pole increases (resp. decreases) while the pole
of order two does not change. This gives an exact solution to the Laplacian
growth problem with injection (resp. suction) taking place at the origin. In
the case of injection, the domain approaches a circle. In the case of suction,
the domain develops a cusp in finite time.

Example 2 (R4): Similarly, the domains constructed in the previous
section can be used to give a solution to the Laplacian growth problem with
a sink at the origin (the domain has to be scaled as the parameter a changes).
Near the value a ≈ 0.82217..., the boundary develops a cusp (apparent in
Fig. 2).

5 Concluding remarks

1. Before rotation into R4, the domain Dp is not a quadrature domain, but
it is a quadrature domain in the wide sense and admits a formula for the
integral of any function F analytic in Dp in terms of a distribution supported
on the interval [−α, 0], where −α = f(−a) is the image of −a under the
conformal map described in the proof of Theorem 3.1.

2. It is possible to obtain an explicit (but complicated) formula for the
Schwarz potential of an axially symmetric domain in Rn. First, take the
axially symmetric reduction to (two variables) as discussed just before the
proof of Theorem 3.1:

∆U +
n− 2

x
Ux = 0,
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Figure 2: Two-dimensional profile of a solution of Laplacian growth in R4,
reminiscent of the cardioid example in the plane.

where U(x, y) is the Schwarz potential in the cylindrical variables, and we
have taken y as the variable along the axis of symmetry in order to correspond
with a reference used below.

Now, let x and y each take complex values and make the change of vari-
ables to characteristic coordinates z = x+ iy, w = x− iy:

Uzw +
n− 2

2(z + w)
(Uz + Uw) = 0.

This is a complexified hyperbolic equation with lower order terms. The
Cauchy problem can be solved using a generalization of d’Alembert’s formula
involving a so-called Riemann function A(s, t; z, w). The general procedure
is discussed in [5, Ch. 4 and Ch. 5], and the Riemann function for this
equation is given by formula (5.36).

A(s, t; z, w) =
(s+ t)λ

(s+ w)λ/2(t+ z)λ/2
F

(
λ
2
, λ

2
; 1;

(s− z)(t− w)

(s+ w)(t+ z)

)
,

where F (a, b; c;x) denotes the Gauss hypergeometric function, and λ = n−2.
In the case n = 4, the hypergeometric function F (1, 1; 1;x) = 1

1−x is rational,
but in the case n = 3 it is transcendental.
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Let S(z) be the Schwarz function of the curve γ that generates the surface
(by rotation). The complexification of the curve then becomes the graph in
C2 of S(z). Using also the fact that the inverse S−1(w) = S̄(w), is just the
function obtained by conjugating the coefficients of S, the following formula
for U(z, w) is a complex version of the formula (4.73) from [5]:

4U(z, w) = 2
[
A(S̄(w), w; z, w)S̄(w)w + A(z, S(z); z, w)S(z)z

]
+
∫ w
S(z)

n−2
S̄(t)−tA(S̄(t), t; z, w)S̄(t)t+A(S̄(t), t; z, w)S̄(t)−At(S̄(t), t; z, w)S̄(t)tdt

−
∫ S̄(w)

z
n−2
s−S(s)

A(s, S(s); z, w)S(s)s

+A(s, S(s); z, w)S(s)− As(s, S(s); z, w)S(s)sds,
where we have also taken into account the Cauchy data in the above formula:

U |γ = zw/2
Uz|γ = w/2
Uw|γ = z/2

Instead of using the Schwarz function, this formula can be written in terms
of the conformal map f from the disk by making the change of variables t =
f(ξ), s = f(η), and using the relation S(f(η)) = f̄( 1

η
). Making this change of

variables, one can then consider the following problem whose solution would
yield three-dimensional quadrature domains with prescribed quadrature:

Suppose the singularities of U(z, z̄) are prescribed throughout Ω. Is it
possible to then determine f using the formula above?

Conceptually, this is analogous to what was done in Section 3, recovering
f(z) from the functional equation (3.5), but in practical terms it appears
much more difficult.

3. Since R4 has proven easier to work with than the more relevant R3, one
wonders if axially symmetric examples in R3 can be expected to “interpolate”,
in some sense, between ones in R2 and corresponding ones in R4, so that one
can formulate conjectures regarding the more physically relevant case of R3.
For instance, starting with a circle, a sphere in R3, and a hypersphere in
R4 (all of the same radius), consider a dipole flow from the center (in the
direction of the x-axis). The two and four-dimensional examples each develop
a cusp on the x-axis. We expect the three-dimensional example does also, and
it is tempting to conjecture that the position of the cusp is located between
the positions of the two and four-dimensional cases. It may be more suitable
to formulate this question generally within the framework of “generalized
axially symmetric potentials” [22], i.e. considering non-integer values of the
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parameter λ in the equation

∆u+
λux
x

= 0.

Then the question is whether certain aspects of Laplacian growth “depend
monotonically” on λ.

4. The procedure used in the proof of Theorem 3.1 can also be used to
construct other domains having quadrature formula of the form (3.2) with
any choice of m, i.e. having any number of non-vanishing harmonic mo-
ments. Considering these other cases, one observes that only exceptional
cases are algebraic. It is tempting to conjecture that quadrature domains
are almost never algebraic in dimensions greater than two, and perhaps this
would help explain why it has been so difficult to obtain exact solutions to the
higher-dimensional Laplacian growth problem. For Laplacian growth in any
number of dimensions, if the domain is initially a quadrature domain, then
as mentioned in Section 4 it remains a quadrature domain, but in the plane
it moreover remains an algebraic curve of bounded (uniformly throughout
time) degree.

5. Instead of prescribing the coefficients in the quadrature formula and
trying to find the domain, one can consider a given domain, say with algebraic
boundary, and try to determine if it admits a quadrature formula. In this
case, it is more reasonable to consider “quadrature domains in the wide sense”
and allow for a measure supported on a continuum instead of a finite sum of
point-evaluations. For an analytic surface, it is always possible to find such
a measure supported on a slightly smaller domain. For ellipsoids, there is a
measure supported on a two dimensional set inside called the “focal ellipse”
[14].
Acknowledgement: We wish to thank Lavi Karp for directing us to an
important reference [20]. We would also like to thank the referee for helpful
suggestions regarding the exposition.
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