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Abstract

This is a survey of results on the following problem. Let X be a
simply connected Riemann surface spread over the Riemann sphere. How
are the properties of the uniformizing function of this surface related to
the geometric properties of the surface?
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1. According to the Uniformization Theorem, for every simply connected
Riemann surface X there exists a conformal homeomorphism φ : X0 → X ,
where X0 is one of the three standard regions, the Riemann sphere C, the com-
plex plane C or the unit disc U. We say that the conformal type of X is elliptic,
parabolic or hyperbolic, respectively. The map φ is called the uniformizing map.
If X is given by some geometric construction, the problem arises to relate prop-
erties of φ to those of X . This includes the determination of the conformal
type of X [11, 31, 40, 41]. The case which was studied most is when X ⊂ C
is a simply connected region, X 6= C. Then X is of hyperbolic type and φ is a
univalent function in U.

We recall a more general construction. A surface spread over the sphere is a
pair (X, p), where X is a topological surface and p : X → C a continuous, open
and discrete map. This map p is usually called the projection. The natural
equivalence relation is (X, p) ∼ (Y, q) if there is a homeomorphism φ : X →
Y with the property p = q ◦ φ. According to a theorem of Stöılov, every
continuous open and discrete map p between surfaces locally looks like z 7→ zn.
Those points where n > 1 are isolated, they are called critical points. Stöılov’s
theorem implies that there is a unique conformal structure on X which makes
p holomorphic. If φ is the uniformizing map, then f = p ◦ φ is a meromorphic
function in one of the three standard regions C,C or U. The surface (X, p)
spread over the sphere is then the “Riemann surface of f−1”.
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If D is a region on the sphere, a branch of p−1 in D is a continuous function
ψ : D → X such that p ◦ ψ = idD.

We can define the length of a curve in X as the spherical length1 of its
image under p. Then X becomes a metric space with an intrinsic metric, which
means that the distance between two points is the infimum of the lengths of
curves connecting these points. Similarly, if p : X → C, and the Euclidean
metric in C is used to measure lengths of curves, we obtain a Riemann surface
spread over the plane.

The intrinsic metric on X is a smooth Riemannian metric of constant cur-
vature on the complement of the critical set of p. It is easy to show that the
intrinsic metric on X determines the projection p up to an isometry of the image
sphere or the plane. In what follows, unless otherwise stated, (X, p) denotes a
simply connected surface spread over the sphere, equipped with the intrinsic
spherical metric.

Some criteria of conformal type can be stated in terms of topological (or
even set-theoretic) properties of p. For example, Picard’s theorem implies that
X is of hyperbolic type if p omits three points.

1.1 Ahlfors’s Five Islands Theorem. Suppose that for five Jordan regions
with disjoint closures on the sphere, there are no branches of p−1 in any of these
regions. Then X is of hyperbolic type.

This theorem was stated for the first time by Bloch [6] (with discs instead
of Jordan regions) and proved by Ahlfors in [2]. A short and simple proof was
recently found by Bergweiler [3].

Sullivan asked the general question, for which surfaces (X, p) the conformal
type is determined by topological properties of p. More precisely, let us say
that a simply connected surface (X, p) spread over the sphere has a stable type
if for every homeomorphism ψ : C→ C the surface (X,ψ ◦p) has the same type
as (X, p). For example, surfaces satisfying the conditions of the Five Islands
Theorem are of stable hyperbolic type. Another interesting class of surfaces of
stable type is the Speiser class S. We say that (X, p) ∈ S if there exists a finite
set A ⊂ C such that the restriction p : X\p−1(A) → C\A is a covering. The
stability of type of such surfaces was proved by Teichmüller in [37] as one of
the first applications of quasiconformal mappings. His argument extends to the
somewhat wider class consisting of surfaces with the property that the distances
between their singularities2 are bounded from below by a positive constant. All
surfaces of stable parabolic type known to the author have this property. The
simplest example of a parabolic surface with a non-isolated singularity is (C, p),
where p(z) = sin z/z, and it follows from a result of Volkovyskii [40, Th. 45]
that the conformal type of this surface is not stable.

2. If we take the five regions to be spherical discs of equal radii, Theo-
rem 1.1 implies the following [1]: Suppose that for some ε > 0 there are no

1We choose the spherical length element to be 2|dz|/(1+ |z|2), so that the curvature of the
spherical metric is +1.

2A formal definition of singularities and distance between them is in section 2.
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branches of p−1 in discs of radii π/4 − ε. Then X is of hyperbolic type. The
question arises, what is the best constant for which this result still holds. Let
B(X, p) be the supremum of radii of discs where branches of p−1 exist, and
B = inf B(X, p), where the infimum is taken over all surfaces of elliptic or
parabolic type. Ahlfors’s estimate B ≥ π/4 was improved by Pommerenke [33]
to B ≥ π/3, and recently the sharp result was obtained in [8]:

B = b0 := arccos(1/3) ≈ 0.39π.

We have B(C, ℘) = B, where ℘ is the Weierstrass function of a hexagonal
lattice. It is interesting to notice that B = b0 implies Theorem 1.1 by a simple
argument given in [8].

For surfaces (X, p) of elliptic type we have B(X, p) > b0, but it is not known
whether the constant b0 is best possible in this inequality.

This result for elliptic surfaces is derived from the Gauss–Bonnet theorem.
The proof of B ≥ b0 for parabolic surfaces is more complicated. For our class of
surfaces with intrinsic metric, one can define integral curvature [35] as a signed
Borel measure on X which is equal to the area on the smooth part of X and has
negative atoms at the critical points of p. The assumption that B(X, p) < b0
implies that the atoms of negative curvature are sufficiently dense on the sur-
face, so that on large pieces of X the negative part of the curvature dominates
the positive part. Then a bi-Lipschitz modification of the surface is made, which
spreads the integral curvature more evenly on the surface, resulting in a surface
whose Gaussian curvature is bounded from above by a negative constant, and
the Ahlfors–Schwarz lemma implies hyperbolicity. A non-technical exposition of
the ideas of this proof is given in the survey [7] which contains some further geo-
metric applications of this technique of spreading the curvature by bi-Lipschitz
modifications of a surface.

3. To formalize the notion of a singular point of a multi-valued analytic func-
tion, Mazurkiewicz [30] introduced another metric, ρ(x, y) = inf{diam p(C)} on
X , where diam is the diameter with respect to the spherical metric and the infi-
mum is taken over all curves C ⊂ X connecting x and y. Every point x ∈ X has
a neighborhood where the Mazurkiewicz metric coincides with the intrinsic one,
but in general the Mazurkiewicz metric is smaller. Let X∗ be the completion
of X with respect to the Mazurkiewicz metric. Then p has a unique continuous
extension to X∗. The elements of the set Z = X∗\X are called transcendental
singularities of (X, p). The algebraic singularities are just the critical points of
p.

To each transcendental singularity corresponds an asymptotic curve γ :
[0, 1) → X which has no limit in X but its image p ◦ γ has a limit in C. This
limit is called an asymptotic value and it is the projection of the singularity.

If X is of parabolic type, then the set of singularities is totally disconnected.
This can be proved by using Iversen’s theorem [24, 31]. The following classical
result [31], which implies Iversen’s theorem, shows that if we “look in all direc-
tions from a point” on a parabolic surface then very few singularities are visible.
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3.1 Gross’s Theorem. Let (X, p) be a simply connected surface of parabolic
type spread over the sphere, and x ∈ X. Then X contains a geodesic ray from x
of length π (that is from x to the “antipodal point”) in almost every direction.

It is not known whether the estimate of the size of the exceptional set in this
theorem can be improved, but there are examples where this exceptional set of
directions has the power of the continuum [40, Th. 17].

The projection of the set Z of singular points is an analytic (Suslin) set
[30], and for every analytic subset A of the sphere one can find surfaces of both
parabolic and hyperbolic types for which A = p(Z) [21].

The following classification of transcendental singularities was introduced by
Iversen [24]. A singular point x ∈ X∗\X is called direct if for some neighborhood
V ⊂ X∗ of x, the map p omits p(x) in V \{x}. Otherwise x is called indirect.
For example, (C, sin z/z) has two direct singularities over ∞ and two indirect
singularities over 0. The following result was proved in [22]:

3.2 Heins’s Theorem. For a parabolic Riemann surface spread over the sphere,
the set of projections of direct singularities is at most countable.

On the other hand, for some parabolic surfaces, the set of direct singularities
lying over one point may have the power of the continuum.

To state further results on direct singularities we recall the notion of the
order of a meromorphic function in the plane. Let (X, p) be an open simply
connected Riemann surface of parabolic type, spread over the sphere. Then the
intrinsic metric defines a notion of area on X . If φ is the uniformizing map
and f = p ◦ φ the corresponding meromorphic function in C, then the “average
covering number” of the sphere by the images of the discs D(r) = {z : |z| ≤ r}
is defined as the area of φ(D(r)) divided by the area of the sphere C, which is
the same as

A(r, f) =
1

π

∫
D(r)

|f ′|2
(1 + |f |2)2

, r ≥ 0,

and the order of f is defined as

λ(f) = lim sup
r→∞

logA(r, f)

log r
.

It is easy to verify that the order depends only on (X, p) rather then on the
choice of the uniformizing map φ.

3.3 Denjoy–Carleman–Ahlfors Theorem. If f is a meromorphic function
in the plane, and the Riemann surface (C, f) has k ≥ 2 direct singularities, then

lim inf
r→∞

r−k/2A(r, f) > 0.

If p omits a point a ∈ C, then a theorem of Lindelöf implies that at least half
of all singularities of (X, p) lie over a, and these singularities are evidently direct.
So we obtain that such surface can have at most 2λ(f) singularities over the
points in C\{a}. As a corollary, an entire function of order λ can have at most
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2λ finite asymptotic values. This is in contrast with the case of meromorphic
functions: there exist meromorphic functions in the plane of arbitrary prescribed
order λ ≥ 0 for which every point on the sphere is an asymptotic value [13].

In the simplest example sin z/z mentioned above, the indirect singularities
over 0 are accumulation points of critical points. A result of Volkovyski [40, Th.
17] shows that this is not always so: there are parabolic surfaces without critical
points, having indirect singularities. However, for functions of finite order, the
following theorem was proved in [4]:

3.4 Theorem. Let f be a meromorphic function of finite order, and let a be
an indirect singularity of (C, f). Then every neighborhood of a contains critical
points z such that f(z) 6= f(a).

This theorem can be used to prove the existence of critical points under cer-
tain circumstances, and more generally, to study the value distribution of deriva-
tives. In [4] it was used to prove a result which was conjectured by Hayman: for
every transcendental meromorphic function f in C, the equation ff ′ = c has
infinitely many solutions for every c ∈ C\{0}. There is no growth restriction
on f in this last result.

Goldberg and Heins independently noticed that in Theorem 3.3 one may
count some indirect singularities, so-called K singularities, together with the
direct ones. However a geometric characterization of K-singularities is known
only for a very special class of symmetric surfaces [17].

4. There are few instances when a precise correspondence can be established
between classes of surfaces spread over the sphere and classes of meromorphic
functions corresponding to them. We mention first a class of hyperbolic surfaces,
spread over the plane.

4.1 Theorem. For a surface (X, p) spread over the plane, the following condi-
tions are equivalent:
(a) The (Euclidean) radii of discs where branches of p−1 exist are bounded.
(b) A linear isoperimetric inequality holds on X.
(c) X is of hyperbolic type and the uniformizing map φ : U → X is uniformly
continuous with respect to the hyperbolic metric on U and the intrinsic (Eu-
clidean) metric on X .

The equivalence between (a) and (c) is essentially Bloch’s theorem [5]. For
the equivalence of (b) to the other two conditions the reference is [9] where
Theorem 4.1 is stated for a more general classes of surfaces with intrinsic metric
(not necessarily spread over the plane). Holomorphic functions f = p◦φ, where
φ satisfies (c), are called Bloch functions. This class is important because of its
connection with univalent functions: if g is univalent in U, then log g′ is a Bloch
function, and every Bloch function has the form c log g′ where g is univalent in
U and c is a constant [33]. In the case of meromorphic functions and surfaces
spread over the sphere, Ahlfors and Dufresnoy proved that (b) implies (c). It is
plausible that (b) is actually equivalent to (c), but it is not clear what sort of
conditions could replace (a) in the spherical case. Functions satisfying (c) with
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the spherical metric instead of the Euclidean one are called normal, and they
were much studied, see, for example [34].

Passing to parabolic surfaces, we first mention the following result of R. Nevan-
linna [32].

4.2 Theorem. For a surface (X, p) spread over the sphere, the following con-
ditions are equivalent:

(a) The set of transcendental singularities of (X, p) is finite, and p has no
critical points.

(b) (X, p) is equivalent to (C, f) where f is a solution of the differential
equation

f ′′′/f ′ − (3/2) (f ′′/f ′)
2

= P,

where P is a polynomial.

This was extended by Elfving [12] to the case when p has finitely many
algebraic and transcendental singularities. Every solution f of the Schwarz
differential equation in (b) is a ratio of two linearly independent solutions of
the linear differential equation w′′ + (P/2)w = 0. This provides very precise
information on the asymptotic behavior of f .

In the case of infinitely many algebraic singularities, one cannot obtain such
complete results, but still for many subclasses of surfaces of the Speiser class
(which was defined in Section 1) one can obtain rather complete information
about the asymptotic behavior of the uniformizing functions [10, 16, 18, 27, 41].
We mention here a question asked by A. Epstein. Let (C, f) be a parabolic
surface of Speiser class, such that f is of finite order. If ψ is a homeomorphism
of the Riemann sphere, then (C, ψ ◦ f) is parabolic because as we mentioned
before, Speiser surfaces have stable type. Let φ be the uniformizing map of this
deformed surface, so that g = ψ ◦ f ◦ φ is a meromorphic function in the plane.
It is easy to show that g also has finite order. The question is whether the
orders of f and g are the same. Künzi [27] showed that this is not necessarily
so for meromorphic functions f , but the question remains unsolved for entire
functions.

Our third example consists of a class of surfaces spread over the plane and
having a symmetry property. Suppose that an anticonformal involution s :
X → X is given. The set of fixed points of s will be called the axis. One can
always choose the uniformizing map φ so that it conjugates the involution with
the reflection with respect to the real axis. We say that (X, p) is symmetric
if p ◦ s = p where the bar stands for the complex conjugation. A symmetric
surface spread over the plane is called a MacLane surface if all its singularities,
algebraic or transcendental, belong to the closure of the axis. Evidently, there
can be at most two such transcendental singularities.

The corresponding class of functions is related to entire functions of Laguerre–
Pólya (LP) class: these are the real entire functions which are limits of real
polynomials with real zeros. According to Laguerre and Pólya, this class LP
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has the parametric representation:

exp(−az2 + bz + c)
∏
k

(
1− z

ak

)
ez/ak , a ≥ 0, b, c, ak ∈ R.

4.3 MacLane’s Theorem. Every surface of MacLane’s class is parabolic. The
derivatives of the corresponding entire functions constitute the class LP.

This was proved in [28]. A very illuminating geometric proof is given in
[39]. The class LP and its geometric characterization occur in many questions
of analysis.

The most striking application is to the spectral theory of self-adjoint sec-
ond order differential operators on the real line with periodic potentials (Hill
operators). It was discovered by Krein [26] that Lyapunov functions of peri-
odic strings are exactly those real entire functions f of genus zero, with positive
roots, which have the property that all solutions z of the equation f2(z) = 1
are non-negative. These functions constitute a subclass of LP which can be
explicitly described in terms of the corresponding MacLane surfaces.

Developing Krein’s idea, Marchenko and Ostrovskii [29] obtained a paramet-
rization of self-adjoint periodic Hill operators in terms of their spectral data.
In a recent paper [38], Tkachenko extended this result to some non self-adjoint
Hill operators (with complex potentials) by considering small perturbations of
MacLane surfaces which are no longer symmetric, and etablishing an exact
correspondence between a class of entire functions and a class of surfaces in the
spirit of Theorem 4.3.

We finish this section by mentioning an unsolved problem about real entire
functions with real zeros.

It is evident from the definition that all derivatives of a function of the class
LP have only real zeros. The converse is also true: if f is a real entire function,
and all zeros of ff ′f ′′ are real, then f ∈ LP [23]. There is a conjecture going
back to Wiman that it is enough to require that only f and f ′′ have real zeros.
Levin and Ostrovskii [25] proved that real entire functions with this property
satisfy log log |f(z)| ≤ O(|z| log |z|). On the other hand, Sheil-Small [36] proved
the conjecture of Wiman for functions of finite order, so a gap remains.3

5. No satisfactory analog of Theorem 4.3 is known for meromorphic func-
tions and open surfaces spread over the sphere. However, there is a related
result for rational functions which was used in [14] to prove a special case of an
intriguing conjecture in real algebraic geometry.

5.1 Theorem. If all critical points of a rational function f belong to a circle C
on the Riemann sphere, then f(C) is a subset of a circle.

Let us call two rational functions f and g equivalent if f = ` ◦ g where ` is
a fractional linear transformation. Equivalent functions have the same critical
points. We may assume without loss of generality that the circle C in Theorem
5.1 is the real line. Then Theorem 5.1 says that whenever the critical points

3This gap was recently filled in a joint work of Bergweiler, Langley and the author.
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of a rational function are real, it is equivalent to a real rational function. A
rational function with prescribed critical points can be obtained as a solution
of a system of algebraic equations, so Theorem 5.1 implies that all solutions of
this system are real whenever the coefficients are real. We will see in a moment
the geometric significance of this system of algebraic equations.

It is very easy to prove Theorem 5.1 for polynomials, because every two
polynomials with the same critical points are equivalent (which means that
solution of the system of algebraic equations mentioned above is essentially
unique in this case). This is not so for rational functions: it turns out that for
given 2d − 2 points in general position on the sphere there are finitely many,
namely

ud =
1

d

(
2d− 2

d− 1

)
, the d-th Catalan number,

of classes of rational functions of degree d which share these critical points. This
is due to L. Goldberg [19] who reduced the problem to the following classical
problem of enumerative geometry: given 2d − 2 lines in general position in
(complex) projective space, how many subspaces of codimension 2 intersect all
these lines? The answer to this last problem, the Catalan number ud, was
obtained by Schubert in 1886 who invented what is now known as “Schubert
Calculus” to solve this and similar enumerative problems.

Notice that rational functions exhibit a very special property in Goldberg’s
result: as we mentioned above, there is only one class of polynomials with pre-
scribed critical points, and similarly there is only one class of Blaschke products
with prescribed critical points [42].

The general question of how many solutions to a problem of enumerative
geometry can be real was asked by Fulton in [15]. A specific conjecture about
the problem of finding subspaces of appropriate codimension intersecting given
real subspaces was made by B. and M. Shapiro. For the problem of Schubert
calculus stated above, this conjecture says that if all 2d − 2 given lines are
tangent to the rational normal curve z 7→ (1 : z : . . . : zd) at real points, then
all ud subspaces of codimension 2 which intersect these lines are real (can be
defined by real equations). This statement is equivalent to Theorem 5.1.

The proof of Theorem 5.1 is based on an explicit description of surfaces
spread over the sphere which correspond to real rational functions with real
critical points in the spirit of Vinberg’s work about the MacLane’s class men-
tioned in section 4.

Let R be the class of real rational functions f whose all critical points are
real and simple. To describe the Riemann surface of f−1 we consider the net
γf which is the preimage γf = f−1(R ∪ ∞) modulo homeomorphisms of the
Riemann sphere commuting with complex conjugation. A net consists of simple
arcs which meet only at the critical points of f . To each of these arcs we
prescribe a label equal to the length of its image under f . One can describe
explicitly all labeled nets which may occur from this construction. It turns out
that labeled nets give a parametrization of the class R of rational functions.
This parametrization has an advantage that it clearly separates the discrete,
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topological parameter (the net) from the continuous parameters (the labeling),
and it turns out that the set of possible labelings of a given net has simple
topological structure: it is a convex polytope.

Using topological methods, we show in [14] that for every net and for every
set of 2d − 2 points on the real line there exists a rational function of the
class R with this net and these critical points. On the other hand, a simple
combinatorial argument shows that the number of possible nets on 2d−2 vertices
is equal to the Catalan number ud. Thus one obtains ud classes of real rational
functions of degree d with prescribed real critical points. Comparison with
L. Goldberg’s result shows that in fact we constructed all classes of rational
functions with prescribed real critical points. Thus all such classes contain real
functions.

The author thanks Mario Bonk, David Drasin, Juha Heinonen, Pietro Poggi-
Coradini and Misha Sodin for help and encouragement.
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